Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stable and complete overcoming of MDR1/P-glycoprotein-mediated multidrug resistance in human gastric carcinoma cells by RNA interference

Abstract

Multidrug resistance (MDR) is the major cause of failure of effective chemotherapeutic treatment of disseminated neoplasms. The “classical” MDR phenotype of human malignancies is mediated by drug extrusion by the adenosine triphosphate binding cassette (ABC)-transporter P-glycoprotein (MDR1/P-gp). For stable reversal of “classical” MDR by RNA interference (RNAi) technology, an H1-RNA gene promoter-driven expression vector encoding anti-MDR1/P-gp short hairpin RNA (shRNA) molecules was constructed. By introduction of anti-MDR1/P-gp shRNA expression vectors into the extremely high drug-resistant human gastric carcinoma cell line EPG85-257RDB, the MDR phenotype was completely reversed. The reversal of MDR was accompanied by a complete suppression of MDR1/P-gp expression on mRNA and protein level, and by a considerable increased intracellular anthracyline accumulation in the anti-MDR1/P-gp shRNA-treated cells. The data indicate that stable shRNA-mediated RNAi can be tremendously effective in reversing MDR1/P-gp-mediated MDR and is therefore a promising strategy for overcoming MDR by gene therapeutic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Biedler JL, Riehm H . Cellular resistance to actinomycin D in Chinese hamster cells in vitro: cross-resistance, radioautographic, and cytogenetic studies. Cancer Res. 1970;30:1174–1184.

    CAS  PubMed  Google Scholar 

  2. Ambudkar SV, Kimchi-Sarfaty C, Sauna ZE, Gottesman MM . P-glycoprotein: from genomics to mechanism. Oncogene. 2003;22:7468–7485.

    Article  CAS  PubMed  Google Scholar 

  3. Lage H . ABC-transporters: implications on drug resistance from microorganisms to human cancers. Int J Antimicrob Agents. 2003;22:188–199.

    Article  CAS  PubMed  Google Scholar 

  4. Kellen JA . The reversal of multidrug resistance: an update. J Exp Ther Oncol. 2003;3:5–13.

    Article  PubMed  Google Scholar 

  5. Robert J, Jarry C . Multidrug resistance reversal agents. J Med Chem. 2003;46:4805–4817.

    Article  CAS  PubMed  Google Scholar 

  6. Thomas H, Coley HM . Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting P-glycoprotein. Cancer Control. 2003;10:159–165.

    Article  PubMed  Google Scholar 

  7. Liu C, Qureshi IA, Ding X, et al. Modulation of multidrug resistance gene (mdr-1) with antisense oligodeoxynucleotides. Clin Sci (Lond). 1996;91:93–98.

    Article  CAS  Google Scholar 

  8. Stuart DD, Kao GY, Allen TM . A novel, long-circulating, and functional liposomal formulation of antisense oligodeoxynucleotides targeted against MDR1. Cancer Gene Ther. 2000;7:466–475.

    Article  CAS  PubMed  Google Scholar 

  9. Holm PS, Scanlon KJ, Dietel M . Reversion of multidrug resistance in the P-glycoprotein-positive human pancreatic cell line (EPP85-181RDB) by introduction of a hammerhead ribozyme. Br J Cancer. 1994;70:239–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kobayashi H, Dorai T, Holland JF, Ohnuma T . Reversal of drug sensitivity in multidrug-resistant tumor cells by an MDR1(PGY1) ribozyme. Cancer Res. 1994;54:1271–1275.

    CAS  PubMed  Google Scholar 

  11. Nieth C, Priebsch A, Stege A, Lage H . Modulation of the classical multidrug resistance (MDR) phenotype by RNA interference (RNAi). FEBS Lett. 2003;545:144–150.

    Article  CAS  PubMed  Google Scholar 

  12. Wu H, Hait WN, Yang JM . Small interfering RNA-induced suppression of MDR1 (P-glycoprotein) restores sensitivity to multidrug-resistant cancer cells. Cancer Res. 2003;63:1515–1519.

    CAS  PubMed  Google Scholar 

  13. McManus MT, Sharp PA . Gene silencing in mammals by small interfering RNAs. Nat Rev Genet. 2002;3:737–747.

    Article  CAS  PubMed  Google Scholar 

  14. Hannon GJ . RNA interference. Nature. 2002;418:244–251.

    Article  CAS  PubMed  Google Scholar 

  15. Nykanen A, Haley B, Zamore PD . ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell. 2001;107:309–321.

    Article  CAS  PubMed  Google Scholar 

  16. Ui-Tei K, Zenno S, Miyata Y, Saigo K . Sensitive assay of RNA interference in Drosophila and Chinese hamster cultured cells using firefly luciferase gene as target. FEBS Lett. 2000;479:79–82.

    Article  CAS  PubMed  Google Scholar 

  17. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T . Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411:494–498.

    Article  CAS  PubMed  Google Scholar 

  18. Brummelkamp TR, Bernards R, Agami R . A system for stable expression of short interfering RNAs in mammalian cells. Science. 2002;296:550–553.

    Article  CAS  PubMed  Google Scholar 

  19. Dietel M, Arps H, Lage H, Niendorf A . Membrane vesicle formation due to acquired mitoxantrone resistance in human gastric carcinoma cell line EPG85-257. Cancer Res. 1990;50:6100–6106.

    CAS  PubMed  Google Scholar 

  20. Skehan P, Storeng R, Scudiero D, et al. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst. 1990;82:1107–1112.

    Article  CAS  PubMed  Google Scholar 

  21. Lage H, Perlitz C, Abele R, et al. Enhanced expression of human ABC-transporter tap is associated with cellular resistance to mitoxantrone. FEBS Lett. 2001;503:179–184.

    Article  CAS  PubMed  Google Scholar 

  22. Wichert A, Stege A, Midorikawa Y, Holm PS, Lage H . Glypican-3 is involved in cellular protection against mitoxantrone in gastric carcinoma cells. Oncogene. 2004;23:945–955.

    Article  CAS  PubMed  Google Scholar 

  23. Aleman C, Annereau JP, Liang XJ, et al. P-glycoprotein, expressed in multidrug resistant cells, is not responsible for alterations in membrane fluidity or membrane potential. Cancer Res. 2003;63:3084–3091.

    CAS  PubMed  Google Scholar 

  24. Lee NS, Dohjima T, Bauer G, et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol. 2002;20:500–505.

    Article  CAS  PubMed  Google Scholar 

  25. Miyagishi M, Taira K . U6 promoter-driven siRNAs with four uridine 3' overhangs efficiently suppress targeted gene expression in mammalian cells. Nat Biotechnol. 2002;20:497–500.

    Article  CAS  PubMed  Google Scholar 

  26. Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS . Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 2002;16:948–958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Paul CP, Good PD, Winer I, Engelke DR . Effective expression of small interfering RNA in human cells. Nat Biotechnol. 2002;20:505–508.

    Article  CAS  PubMed  Google Scholar 

  28. Sui G, Soohoo C, el Affar B, et al. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci USA. 2002;99:5515–5520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yu JY, DeRuiter SL, Turner DL . RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci USA. 2002;99:6047–6052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ilves H, Barske C, Junker U, Bohnlein E, Veres G . Retroviral vectors designed for targeted expression of RNA polymerase III-driven transcripts: a comparative study. Gene. 1996;171:203–208.

    Article  CAS  PubMed  Google Scholar 

  31. Jacque JM, Triques K, Stevenson M . Modulation of HIV-1 replication by RNA interference. Nature. 2002;418:435–438.

    Article  CAS  PubMed  Google Scholar 

  32. McManus MT, Petersen CP, Haines BB, Chen J, Sharp PA . Gene silencing using micro-RNA designed hairpins. RNA. 2002;8:842–850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Harborth J, Elbashir SM, Bechert K, Tuschl T, Weber K . Identification of essential genes in cultured mammalian cells using small interfering RNAs. J Cell Sci. 2001;114:4557–4565.

    CAS  PubMed  Google Scholar 

  34. Holm PS, Dietel M, Krupp G . Similar cleavage efficiencies of an oligoribonucleotide substrate and an mdr1 mRNA segment by a hammerhead ribozyme. Gene. 1995;167:221–225.

    Article  CAS  PubMed  Google Scholar 

  35. Budworth J, Gant TW, Gescher A . Co-ordinate loss of protein kinase C and multidrug resistance gene expression in revertant MCF-7/Adr breast carcinoma cells. Br J Cancer. 1997;75:1330–1335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Beaulieu E, Demeule M, Ghitescu L, Beliveau R . P-glycoprotein is strongly expressed in the luminal membranes of the endothelium of blood vessels in the brain. Biochem J. 1997;326:539–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Holm PS, Lage H, Bergmann S, et al. Multidrug-resistant cancer cells facilitate E1-independent adenoviral replication: impact for cancer gene therapy. Cancer Res. 2004;64:322–328.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant LA 1039/2-3 of the “Deutsche Forschungsgemeinschaft” (DFG) and by the “RNA-network” funded by the “Bundesministerium für Bildung und Forschung” (BMBF) and Berlin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Lage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stege, A., Priebsch, A., Nieth, C. et al. Stable and complete overcoming of MDR1/P-glycoprotein-mediated multidrug resistance in human gastric carcinoma cells by RNA interference. Cancer Gene Ther 11, 699–706 (2004). https://doi.org/10.1038/sj.cgt.7700751

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700751

Keywords

This article is cited by

Search

Quick links