Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Induction of CAMEL/NY-ESO-ORF2-specific CD8+ T cells upon stimulation with dendritic cells infected with a modified Ad5 vector expressing a chimeric Ad5/35 fiber

Abstract

Delivery of the full-length tumor antigen might be more successful in immunotherapy than single peptides and has the advantage that patients no longer need to be selected for their HLA type. In this study, we tested the in vitro induction of CAMEL/NY-ESO-ORF2-specific T cells by dendritic cells infected with an adenovirus (Ad) type 5 vector containing the fiber shaft and knob of human serotype Ad35 (Ad5F35 vector). Our data show induction of CD8+ T cells specific for the known HLA-A*0201-binding CAMEL/NY-ESO-ORF21–11 epitope by DC infected with Ad5F35-CAMEL, but not by DC pulsed with the recombinant CAMEL protein. In one healthy donor, even CD8+ T cells specific for a new HLA-B7-binding CAMEL/NY-ESO-ORF246–54 epitope were raised. In conclusion, the in vitro induction of CAMEL/NY-ESO-ORF2-specific CD8+ T cells in healthy donors by DC infected with Ad5F35-CAMEL strongly supports further investigation of the Ad5F35 vector as a vehicle for gene transfer into DC for the generation of tumor antigen-specific CD8+ T cell responses in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Wang RF, Rosenberg SA . Human tumor antigens for cancer vaccine development. Immunol Rev. 1999;170:85–100.

    Article  CAS  PubMed  Google Scholar 

  2. Cormier JN, Salgaller ML, Prevette T, et al. Enhancement of cellular immunity in melanoma patients immunized with a peptide from MART-1/Melan A. Cancer J Sci Am. 1997;3:37–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Jager E, Bernhard H, Romero P, et al. Generation of cytotoxic T cell responses with synthetic melanoma-associated peptides in vivo: implications for tumor vaccines with melanoma-associated antigens. Int J Cancer. 1996;66:162–169.

    Article  Google Scholar 

  4. Nestle FO, Alijagic S, Gilliet M, et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med. 1998;4:328–332.

    Article  CAS  PubMed  Google Scholar 

  5. Rosenberg SA, Yang JC, Schwartzentruber DJ, et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med. 1998;4:321–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Slingluff Jr CL, Yamshchikov G, Neese P, et al. Phase I trial of a melanoma vaccine with gp100(280–288) peptide and tetanus helper peptide in adjuvant: immunologic and clinical outcomes. Clin Cancer Res. 2001;7:3012–3024.

    CAS  PubMed  Google Scholar 

  7. Lau R, Wang F, Jeffery G, et al. Phase I trial of intravenous peptide-pulsed dendritic cells in patients with metastatic melanoma. J Immunother. 2001;24:66–78.

    Article  CAS  PubMed  Google Scholar 

  8. Scheibenbogen C, Schadendorf D, Bechrakis NE, et al. Effects of granulocyte–macrophage colony-stimulating factor and foreign helper protein as immunologic adjuvants on the T-cell response to vaccination with tyrosinase peptides. Int J Cancer. 2003;104:188–194.

    Article  CAS  PubMed  Google Scholar 

  9. Mukherji B, Chakraborty NG, Yamasaki S, et al. Induction of antigen-specific cytolytic T cells in situ in human melanoma by immunization with synthetic peptide-pulsed autologous antigen presenting cells. Proc Natl Acad Sci USA. 1995;92:8078–8082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hu X, Chakraborty NG, Sporn JR, et al. Enhancement of cytolytic T lymphocyte precursor frequency in melanoma patients following immunization with the MAGE-1 peptide loaded antigen presenting cell-based vaccine. Cancer Res. 1996;56:2479–2483.

    CAS  PubMed  Google Scholar 

  11. Marchand M, van Baren N, Weynants P, et al. Tumor regressions observed in patients with metastatic melanoma treated with an antigenic peptide encoded by gene MAGE-3 and presented by HLA-A1. Int J Cancer. 1999;80:219–230.

    Article  CAS  PubMed  Google Scholar 

  12. Thurner B, Haendle I, Roder C, et al. Vaccination with Mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med. 1999;190:1669–1678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gnjatic S, Jager E, Chen W, et al. CD8(+) T cell responses against a dominant cryptic HLA-A2 epitope after NY-ESO-1 peptide immunization of cancer patients. Proc Natl Acad Sci USA. 2002;99:11813–11818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Meidenbauer N, Marienhagen J, Laumer M, et al. Survival and tumor localization of adoptively transferred Melan-A-specific T cells in melanoma patients. J Immunol. 2003;170:2161–2169.

    Article  CAS  PubMed  Google Scholar 

  15. Yee C, Thompson JA, Byrd D, et al. Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc Natl Acad Sci USA. 2002;99:16168–16173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ossendorp F, Mengede E, Camps M, et al. Specific T helper cell requirement for optimal induction of cytotoxic T lymphocytes against major histocompatibility complex class II negative tumors. J Exp Med. 1998;187:693–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schoenberger SP, Toes RE, van der Voort EI, et al. T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions. Nature. 1998;393:480–483.

    Article  CAS  PubMed  Google Scholar 

  18. Bennett SR, Carbone FR, Karamalis F, et al. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature. 1998;393:478–480.

    Article  CAS  PubMed  Google Scholar 

  19. Ridge JP, Di Rosa F, Matzinger P . A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature. 1998;393:474–478.

    Article  CAS  PubMed  Google Scholar 

  20. Butterfield LH, Jilani SM, Chakraborty NG, et al. Generation of melanoma-specific cytotoxic T lymphocytes by dendritic cells transduced with a MART-1 adenovirus. J Immunol. 1998;161:5607–5613.

    CAS  PubMed  Google Scholar 

  21. Linette GP, Shankara S, Longerich S, et al. In vitro priming with adenovirus/gp100 antigen-transduced dendritic cells reveals the epitope specificity of HLA-A*0201-restricted CD8+ T cells in patients with melanoma. J Immunol. 2000;164:3402–3412.

    Article  CAS  PubMed  Google Scholar 

  22. Ribas A, Butterfield LH, McBride WH, et al. Genetic immunization for the melanoma antigen MART-1/Melan-A using recombinant adenovirus-transduced murine dendritic cells. Cancer Res. 1997;57:2865–2869.

    CAS  PubMed  Google Scholar 

  23. Kaplan JM, Yu Q, Piraino ST, et al. Induction of antitumor immunity with dendritic cells transduced with adenovirus vector-encoding endogenous tumor-associated antigens. J Immunol. 1999;163:699–707.

    CAS  PubMed  Google Scholar 

  24. Bergelson JM, Cunningham JA, Droguett G, et al. Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science. 1997;275:1320–1323.

    Article  CAS  PubMed  Google Scholar 

  25. Segerman A, Mei YF, Wadell G . Adenovirus types 11p and 35p show high binding efficiencies for committed hematopoietic cell lines and are infective to these cell lines. J Virol. 2000;74:1457–1467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rea D, Havenga MJ, van den Assem M, et al. Highly efficient transduction of human monocyte-derived dendritic cells with subgroup B fiber-modified adenovirus vectors enhances transgene-encoded antigen presentation to cytotoxic T cells. J Immunol. 2001;166:5236–5244.

    Article  CAS  PubMed  Google Scholar 

  27. Havenga MJ, Lemckert AA, Ophorst OJ, et al. Exploiting the natural diversity in adenovirus tropism for therapy and prevention of disease. J Virol. 2002;76:4612–4620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chirmule N, Propert K, Magosin S, et al. Immune responses to adenovirus and adeno-associated virus in humans. Gene Therapy. 1999;6:1574–1583.

    Article  CAS  PubMed  Google Scholar 

  29. Molnar-Kimber KL, Sterman DH, Chang M, et al. Impact of preexisting and induced humoral and cellular immune responses in an adenovirus-based gene therapy phase I clinical trial for localized mesothelioma. Hum Gene Ther. 1998;9:2121–2133.

    Article  CAS  PubMed  Google Scholar 

  30. Gahery-Segard H, Farace F, Godfrin D, et al. Immune response to recombinant capsid proteins of adenovirus in humans: antifiber and anti-penton base antibodies have a synergistic effect on neutralizing activity. J Virol. 1998;72:2388–2397.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wohlfart C . Neutralization of adenoviruses: kinetics, stoichiometry, and mechanisms. J Virol. 1988;62:2321–2328.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Flomenberg PR, Chen M, Munk G, et al. Molecular epidemiology of adenovirus type 35 infections in immunocompromised hosts. J Infect Dis. 1987;155:1127–1134.

    Article  CAS  PubMed  Google Scholar 

  33. Aarnoudse CA, van den Doel PB, Heemskerk B, et al. Interleukin-2-induced, melanoma-specific T cells recognize CAMEL, an unexpected translation product of LAGE-1. Int J Cancer. 1999;82:442–448.

    Article  CAS  PubMed  Google Scholar 

  34. Lethe B, Lucas S, Michaux L, et al. LAGE-1, a new gene with tumor specificity. Int J Cancer. 1998;76:903–908.

    Article  CAS  PubMed  Google Scholar 

  35. Chen YT, Scanlan MJ, Sahin U, et al. A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc Natl Acad Sci USA. 1997;94:1914–1918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rimoldi D, Rubio-Godoy V, Dutoit V, et al. Efficient simultaneous presentation of NY-ESO-1/LAGE-1 primary and nonprimary open reading frame-derived CTL epitopes in melanoma. J Immunol. 2000;165:7253–7261.

    Article  CAS  PubMed  Google Scholar 

  37. Wang RF, Johnston SL, Zeng G, et al. A breast and melanoma-shared tumor antigen: T cell responses to antigenic peptides translated from different open reading frames. J Immunol. 1998;161:3598–3606.

    CAS  PubMed  Google Scholar 

  38. Slager EH, Borghi M, van der Minne CE, et al. CD4(+) Th2 cell recognition of HLA-DR-restricted epitopes derived from CAMEL: a tumor antigen translated in an alternative open reading frame. J Immunol. 2003;170:1490–1497.

    Article  CAS  PubMed  Google Scholar 

  39. Havenga MJ, Lemckert AA, Grimbergen JM, et al. Improved adenovirus vectors for infection of cardiovascular tissues. J Virol. 2001;75:3335–3342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shabram PW, Giroux DD, Goudreau AM, et al. Analytical anion-exchange HPLC of recombinant type-5 adenoviral particles. Hum Gene Ther. 1997;8:453–465.

    Article  CAS  PubMed  Google Scholar 

  41. He TC, Zhou S, da-Costa LT, et al. A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA. 1998;95:2509–2514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Griffioen M, Borghi M, Schrier PI, et al. Detection and quantification of CD8(+) T cells specific for HLA-A*0201- binding melanoma and viral peptides by the IFN-gamma-ELISPOT assay. Int J Cancer. 2001;93:549–555.

    Article  CAS  PubMed  Google Scholar 

  43. Gnjatic S, Atanackovic D, Matsuo M, et al. Cross-presentation of HLA class I epitopes from exogenous NY-ESO-1 polypeptides by nonprofessional APCs. J Immunol. 2003;170:1191–1196.

    Article  CAS  PubMed  Google Scholar 

  44. Eberl G, Renggli J, Men Y, et al. Extracellular processing and presentation of a 69-mer synthetic polypetide to MHC class I-restricted T cells. Mol Immunol. 1999;36:103–112.

    Article  CAS  PubMed  Google Scholar 

  45. Marzo AL, Kinnear BF, Lake RA, et al. Tumor-specific CD4+ T cells have a major “post–licensing” role in CTL mediated anti-tumor immunity. J Immunol. 2000;165:6047–6055.

    Article  CAS  PubMed  Google Scholar 

  46. Tuettenberg A, Jonuleit H, Tuting T, et al. Priming of T cells with Ad-transduced DC followed by expansion with peptide-pulsed DC significantly enhances the induction of tumor-specific CD8(+) T cells: implications for an efficient vaccination strategy. Gene Therapy. 2003;10:243–250.

    Article  CAS  PubMed  Google Scholar 

  47. Kuball J, Schuler M, Antunes FE, . Generating p53-specific cytotoxic T lymphocytes by recombinant adenoviral vector-based vaccination in mice, but not man. Gene Therapy. 2002;9:833–843.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A Zakhartchouk for cloning the measles antigen into Ad vectors and subsequent generation and in vitro testing of recombinant viruses carrying CAMEL antigen. We also thank B Vogelstein for providing the plasmids required for generation of the Ad5 vectors and RC Hoeben for propagating the Ad5 vectors encoding LAGE-1 and NY-ESO-1 on PER.C6TM. CAM van Bergen and JHF Falkenburg are gratefully acknowledged for in vitro experiments with purified proteasomes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marieke Griffioen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slager, E., van der Minne, C., Goudsmit, J. et al. Induction of CAMEL/NY-ESO-ORF2-specific CD8+ T cells upon stimulation with dendritic cells infected with a modified Ad5 vector expressing a chimeric Ad5/35 fiber. Cancer Gene Ther 11, 227–236 (2004). https://doi.org/10.1038/sj.cgt.7700674

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700674

Keywords

This article is cited by

Search

Quick links