Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

E6AP gene suppression and characterization with in vitro selected hammerhead ribozymes

Abstract

E6AP was originally identified as the ubiquitin–protein ligase involved in human papillomavirus (HPV) E6-mediated p53 degradation and has since been shown to act as an E3 ubiquitin–protein ligase in the ubiquitination of several other protein substrates. To further define E6AP function at the molecular and cellular levels, a ribozyme-based gene inactivation approach was adopted. A library of hammerhead ribozymes, with randomized arm sequences, was used to screen active molecules along the entire E6AP transcript for ribozyme-cleavable sites. Ligation-anchored PCR was adapted to detect cleavage products, and ribozymes designed to the selected sites were characterized both in vitro and in vivo. Ribozyme-mediated reduction in E6AP expression was found to enhance the apoptotic response of HeLa cells to mitomycin C-induced DNA damage. These findings suggest that E6AP has potential as a drug target, as its suppression can potentiate apoptosis in HPV-positive cells treated with a cytotoxic drug.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6
Fig 7

Similar content being viewed by others

References

  1. Peters J-M, Harris JR, Finley D . Ubiquitin and the Biology of the Cell. New York: Plenum Press; 1998: 472 pp.

    Book  Google Scholar 

  2. Scheffner M, Huibregtse JM, Vierstra RD, Howley PM . The HPV-16 E6 and E6-AP complex functions as a ubiquitin–protein ligase in the ubiquitination of p53. Cell. 1993;75:495–505.

    Article  CAS  PubMed  Google Scholar 

  3. Gross-Mesilaty S, Reinstein E, Bercovich B, et al. Basal and human papillomavirus E6 oncoprotein-induced degradation of myc proteins by the ubiquitin pathway. Proc Natl Acad Sci USA. 1998;95:8058–8063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kuhne C, Banks L . E3-ubiquitin ligase/E6-AP links multicopy maintenance protein 7 to the ubiquitination pathway by a novel motif, the L2G box. J Biol Chem. 1998;273:34302–34309.

    Article  CAS  PubMed  Google Scholar 

  5. Thomas M, Banks L . Inhibition of Bak-induced apoptosis by HPV-18 E6. Oncogene. 1998;17:2943–2954.

    Article  CAS  PubMed  Google Scholar 

  6. Oda H, Kumar S, Howley PM . Regulation of the src family tyrosine kinase blk through E6AP-mediated ubiquitination. Proc Natl Acad Sci USA. 1999;96:9557–9562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kumar S, Talis AL, Howley PM . Identification of HHR23A as a substrate for E6-associated protein-mediated ubiquitination. J Biol Chem. 1999;274:18785–18792.

    Article  CAS  PubMed  Google Scholar 

  8. Huibregtse JM, Scheffner M, Beaudenon S, Howley PM . A family of proteins structurally and functionally related to the E6-AP ubiquitin–protein ligase. Proc Natl Acad Sci USA. 1995;92:2563–2567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nawaz Z, Lonard DM, Smith CL, Lev-Lehman E, Tsai SY, O'Malley BW . The Angelman Syndrome-associated protein, E6-AP, is a coactivator for the nuclear hormone receptor superfamily. Mol Cell Biol. 1999;19:1182–1189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Matsuura T, Sutcliffe JS, Fang P, et al. De novo truncating mutations in E6-AP ubiquitin–protein ligase gene (UBE3A) in Angelman syndrome. Mol Cell Biol. 1997;15:74–77.

    CAS  Google Scholar 

  11. Kishino T, Lalande M, Wagstaff J . UBE3A/E6-AP mutations cause Angelman syndrome. Nat Genet. 1997;15:70–73.

    Article  CAS  PubMed  Google Scholar 

  12. Haseloff J, Gerlach WL . Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature. 1988;334:585–591.

    Article  CAS  PubMed  Google Scholar 

  13. Campbell TB, Cech TR . Identification of ribozymes within a ribozyme library that efficiently cleave a long substrate RNA. RNA. 1995;1:598–609.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Birikh KR, Berlin YA, Soreq H, Eckstein F . Probing accessible sites for ribozymes on human acetylcholinesterase RNA. RNA. 1997;3:429–437.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Yu Q, Pecchia DB, Kingsley SL, Heckman JE, Burke JM . Cleavage of highly structured viral molecules by combinatorial libraries of hairpin ribozymes. J Biol Chem. 1998;273:23524–23533.

    Article  CAS  PubMed  Google Scholar 

  16. Pan WH, Devlin HF, Kelley C, Isom HC, Clawson GA . A selection system for identifying accessible sites in target RNAs. RNA. 2001;4:610–621.

    Article  Google Scholar 

  17. Pan WH, Xin P, Bui V, Clawson GA . Rapid identification of efficient target cleavage sites using a hammerhead ribozyme library in an iterative manner. Mol Ther. 2003;1:129–139.

    Article  Google Scholar 

  18. Lieber A, Strauss M . Selection of efficient cleavage sites in target RNAs by using a ribozyme library. Mol Cell Biol. 1995;15:540–551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Troutt AB, McHeyzer-Williams MG, Puledndran B, Nossal GJV . Ligation-anchored PCR: a simple amplification technique with single-sided specificity. Proc Natl Acad Sci USA. 1992;89:9823–9825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cairns MJ, Hopkins TM, Witherington C, Wang L, Sun L-Q . Target site selection for an RNA-cleaving catalytic DNA. Nat Biotechnol. 1999;17:480–486.

    Article  CAS  PubMed  Google Scholar 

  21. Heidenreich O, Eckstein F . Hammerhead ribozyme-mediated cleavage of the long terminal repeat RNA of human immunodeficiency virus type 1. J Biol Chem. 1992;267:1904–1909.

    CAS  PubMed  Google Scholar 

  22. Heidenreich O, Benseler F, Fahrenholz A, Eckstein F . High activity and stability of hammerhead ribozymes containing 2′-modified pyrimidine nucleosides and phosphothioates. J Biol Chem. 1994;269:2131–2138.

    CAS  PubMed  Google Scholar 

  23. Butz K, Shahabeddin L, Geisen C, Spitkovsky D, Ullmann A, Hoppe-Stoppler F . Functional p53 protein in human papillomavirus-positive cancer cells. Oncogene. 1995;10:927–936.

    CAS  PubMed  Google Scholar 

  24. Tessier DC, Brousseau R, Vernet T . Ligation of single-stranded oligodeoxyribonucleotides by T4 RNA ligase. Anal Biochem. 1986;158:171–178.

    Article  CAS  PubMed  Google Scholar 

  25. Ruffner DE, Stormo GD, Uhlenbeck OC . Sequence requirements of the hammerhead RNA self-cleavage reaction. Biochemistry. 1990;29:10695–10702.

    Article  CAS  PubMed  Google Scholar 

  26. Perriman R, Delves A, Gerlach WL . Extended target-site specificity for a hammerhead ribozyme. Gene. 1992;113:157–163.

    Article  CAS  PubMed  Google Scholar 

  27. Scheffner M, Nuber U, Huibregtse JM . Protein ubiquitination involving an E1–E2–E3 enzyme ubiquitin thioester cascade. Nature. 1995;373:81–83.

    Article  CAS  PubMed  Google Scholar 

  28. Beer-Romero P, Glass S, Rolfe M . Antisense targeting of E6AP elevates p53 in HPV-infected cells but not in normal cells. Oncogene. 1997;14:595–602.

    Article  CAS  PubMed  Google Scholar 

  29. Ho SP, Britton DH, Stone BA, et al. Potent antisense oligonucleotides to the human multidrug resistance-1 mRNA are rationally selected by mapping RNA-accessible sites with oligonucleotide libraries. Nucleic Acids Res. 1996;24:1901–1907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Edwards JBM, Delort J, Mallet J . Oligodeoxyribonucleotide ligation to single-stranded cDNAs: a new tool for cloning 5′ ends of mRNAs and for constructing cDNA libraries by in vitro amplification. Nucleic Acids Res. 1991;19:5227–5232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cairns MJ, Murray V . Influence of chromatin structure on bleomycin–DNA interactions at base pair resolution in the human β-globin gene cluster. Biochemistry. 1996;35:8753–8760.

    Article  CAS  PubMed  Google Scholar 

  32. Mehlen P, Schulze-Osthoff K, Arrigo AP . Small stress proteins as novel regulators of apoptosis. Heat shock protein 27 blocks Fas/APO-1- and staurosporine-induced cell death. J Biol Chem. 1996;271:16510–16514.

    Article  CAS  PubMed  Google Scholar 

  33. Cervellera M, Raschella G, Santilli G, et al. Direct transactivation of the anti-apoptotic gene apolipoprotein J (clusterin) by B-MYB. J Biol Chem. 2000;275:21055–21060.

    Article  CAS  PubMed  Google Scholar 

  34. Postel EH . NM23/nucleoside diphosphate kinase as a transcriptional activator of c-myc. Curr Top Microbiol Immunol. 1996;213:233–252.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr JM Huibregtse for the gift of the pGEM150-120 E6AP cDNA, Dr PR Daniels for the anti-E6AP polyclonal antibody and Dr WL Gerlach for critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lun-Quan Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y., Cairns, M., Marouga, R. et al. E6AP gene suppression and characterization with in vitro selected hammerhead ribozymes. Cancer Gene Ther 10, 707–716 (2003). https://doi.org/10.1038/sj.cgt.7700623

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700623

Keywords

This article is cited by

Search

Quick links