Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Induction of Influenza Matrix Protein 1 and MelanA-specific T lymphocytes in vitro using mRNA-electroporated dendritic cells

Abstract

Genetically modified dendritic cells (DC) constitute a promising approach in cancer immunotherapy. Viral gene delivery systems have been shown to be very efficient strategies, but safety concerns for their clinical use in immunotherapy remain an important issue. Recently, the technique of mRNA electroporation was described as a very efficient tool for the genetic modification of human monocyte-derived DC. Here, we show that transgene expression can be modulated by varying the amount of mRNA used for electroporation. We document that CD40 ligation leads to a significant production of IL-12 by the electroporated DC, although the level of IL-12 production is somewhat lower than for non- or mock-electroporated DC. Furthermore, we show that the electroporated DC can be frozen and thawed without loss of viability or function and that Influenza virus Matrix Protein 1 mRNA electroporated DC are capable of inducing a memory cytotoxic T lymphocyte response and are more potent in doing so than mRNA-pulsed DC. Similar results were obtained with MelanA/MART-1 mRNA electroporated DC. These results clearly indicate that mRNA-electroporated DC represent powerful candidates for use as tumor vaccines and could constitute an improvement compared with vaccines using peptide-pulsed DC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Steinman RM . The dendritic cell system and its role in immunogenicity. Annu Rev Immunol. 1991;9:271–296.

    Article  CAS  PubMed  Google Scholar 

  2. Cella M, Sallusto F, Lanzavecchia A . Origin, maturation and antigen presenting function of dendritic cells. Curr Opin Immunol. 1997;9:10–16.

    Article  CAS  PubMed  Google Scholar 

  3. Banchereau J, Steinman RM . Dendritic cells and the control of immunity. Nature. 1998;392:245–252.

    Article  CAS  PubMed  Google Scholar 

  4. Bell D, Young JW, Banchereau J . Dendritic cells. Adv Immunol. 1999;72:255–324.

    Article  CAS  PubMed  Google Scholar 

  5. Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic cells. Annu Rev Immunol. 2000;18:767–811.

    Article  CAS  PubMed  Google Scholar 

  6. Guermonprez P, Valladeau J, Zitvogel L, et al. Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol. 2002;20:621–667.

    Article  CAS  PubMed  Google Scholar 

  7. Celluzzi CM, Mayordomo JI, Storkus WJ, et al. Peptide-pulsed dendritic cells induce antigen-specific CTL-mediated protective tumor immunity. J Exp Med. 1996;183:283–287.

    Article  CAS  PubMed  Google Scholar 

  8. Pardoll DM . Cancer vaccines. Nat Med. 1998;4:525–531.

    Article  CAS  PubMed  Google Scholar 

  9. Brossart P, Wirths S, Stuhler G, et al. Induction of cytotoxic T-lymphocyte responses in vivo after vaccinations with peptide-pulsed dendritic cells. Blood. 2000;96:3102–3108.

    CAS  PubMed  Google Scholar 

  10. Schlienger K, Craighead N, Lee P, et al. Efficient priming of protein antigen-specific human CD4(+) T cells by monocyte-derived dendritic cells. Blood. 2000;96:3490–3498.

    CAS  PubMed  Google Scholar 

  11. Chen CH, Wu TC . Experimental vaccine strategies for cancer immunotherapy. J Biomed Sci. 1998;5:231–252.

    Article  CAS  PubMed  Google Scholar 

  12. Hung K, Hayashi R, Lafond-Walker A, et al. The central role of CD4(+) T cells in the antitumor immune response. J Exp Med. 1998;188:2357–2368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gao FG, Khammanivong V, Liu WJ, et al. Antigen-specific CD4+ T-cell help is required to activate a memory CD8+ T cell to a fully functional tumor killer cell. Cancer Res. 2002;62:6438–6441.

    CAS  PubMed  Google Scholar 

  14. Pardoll DM, Topalian SL . The role of CD4+ T cell responses in antitumor immunity. Curr Opin Immunol. 1998;10:588–594.

    Article  CAS  PubMed  Google Scholar 

  15. Wang RF . The role of MHC class II-restricted tumor antigens and CD4+ T cells in antitumor immunity. Trends Immunol. 2001;22:269–276.

    Article  PubMed  Google Scholar 

  16. Marzo AL, Kinnear BF, Lake RA, et al. Tumor-specific CD4+ T cells have a major "post-licensing" role in CTL mediated anti-tumor immunity. J Immunol. 2000;165:6047–6055.

    Article  CAS  PubMed  Google Scholar 

  17. Tobery TW, Siliciano RF . Targeting of HIV-1 antigens for rapid intracellular degradation enhances cytotoxic T lymphocyte (CTL) recognition and the induction of de novo CTL responses in vivo after immunization. J Exp Med. 1997;185:909–920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tobery T, Siliciano RF . Cutting edge: induction of enhanced CTL-dependent protective immunity in vivo by N-end rule targeting of a model tumor antigen. J Immunol. 1999;162:639–642.

    CAS  PubMed  Google Scholar 

  19. Varshavsky A, Turner G, Du F, et al. Felix Hoppe-Seyler Lecture 2000. The ubiquitin system and the N-end rule pathway. Biol Chem. 2000;381:779–789.

    Article  CAS  PubMed  Google Scholar 

  20. Bonini C, Lee SP, Riddell SR, et al. Targeting antigen in mature dendritic cells for simultaneous stimulation of CD4+ and CD8+ T cells. J Immunol. 2001;166:5250–5257.

    Article  CAS  PubMed  Google Scholar 

  21. Lin KY, Guarnieri FG, Staveley-O'Carroll KF, et al. Treatment of established tumors with a novel vaccine that enhances major histocompatibility class II presentation of tumor antigen. Cancer Res. 1996;56:21–26.

    CAS  PubMed  Google Scholar 

  22. Thomson SA, Burrows SR, Misko IS, et al. Targeting a polyepitope protein incorporating multiple class II-restricted viral epitopes to the secretory/endocytic pathway facilitates immune recognition by CD4+ cytotoxic T lymphocytes: a novel approach to vaccine design. J Virol. 1998;72:2246–2252.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wu TC, Guarnieri FG, Staveley-O'Carroll KF, et al., Engineering an intracellular pathway for major histocompatibility complex class II presentation of antigens. Proc Natl Acad Sci USA. 1995;92:11671–11675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Morgan RA, Anderson WF . Human gene therapy. Annu Rev Biochem. 1993;62:191–217.

    Article  CAS  PubMed  Google Scholar 

  25. Anderson WF . Human gene therapy. Nature. 1998;392:25–30.

    Article  CAS  PubMed  Google Scholar 

  26. Dietz AB, Vuk-Pavlovic S . High efficiency adenovirus-mediated gene transfer to human dendritic cells. Blood. 1998;91:392–398.

    CAS  PubMed  Google Scholar 

  27. Robbins PD, Ghivizzani SC . Viral vectors for gene therapy. Pharmacol Ther. 1998;80:35–47.

    Article  CAS  PubMed  Google Scholar 

  28. Boczkowski D, Nair SK, Nam JH, et al. Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells. Cancer Res. 2000;60:1028–1034.

    CAS  PubMed  Google Scholar 

  29. Koido S, Kashiwaba M, Chen D, et al. Induction of antitumor immunity by vaccination of dendritic cells transfected with MUC1 RNA. J Immunol. 2000;165:5713–5719.

    Article  CAS  PubMed  Google Scholar 

  30. Irvine AS, Trinder PK, Laughton DL et al., Efficient nonviral transfection of dendritic cells and their use for in vivo immunization. Nat Biotechnol. 2000;18:1273–1278.

    Article  CAS  PubMed  Google Scholar 

  31. Li S, Huang L . Nonviral gene therapy: promises and challenges. Gene Ther. 2000;7:31–34.

    Article  CAS  PubMed  Google Scholar 

  32. Mitchell DA, Nair SK . RNA-transfected dendritic cells in cancer immunotherapy. J Clin Invest. 2000;106:1065–1069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nair SK, Heiser A, Boczkowski D, et al. Induction of cytotoxic T cell responses and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells. Nat Med. 2000;6:1011–1017.

    Article  CAS  PubMed  Google Scholar 

  34. Strobel I, Berchtold S, Gotze A, et al. Human dendritic cells transfected with either RNA or DNA encoding influenza matrix protein M1 differ in their ability to stimulate cytotoxic T lymphocytes. Gene Ther. 2000;7:2028–2035.

    Article  CAS  PubMed  Google Scholar 

  35. Heiser A, Maurice MA, Yancey DR, et al. Human dendritic cells transfected with renal tumor RNA stimulate polyclonal T-cell responses against antigens expressed by primary and metastatic tumors. Cancer Res. 2001;61:3388–3393.

    CAS  PubMed  Google Scholar 

  36. Van Tendeloo VF, Ponsaerts P, Lardon F, et al. Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells. Blood. 2001;98:49–56.

    Article  CAS  PubMed  Google Scholar 

  37. Ponsaerts P, Van Tendeloo VF, Cools N, et al. mRNA-electroporated mature dendritic cells retain transgene expression, phenotypical properties and stimulatory capacity after cryopreservation. Leukemia. 2002;16:1324–1330.

    Article  CAS  PubMed  Google Scholar 

  38. Kalady MF, Onaitis MW, Padilla KM, et al. Enhanced dendritic cell antigen presentation in RNA-based immunotherapy. J Surg Res. 2002;105:17–24.

    Article  CAS  PubMed  Google Scholar 

  39. Tuyaerts S, Noppe M, Corthals J, et al. Generation of large numbers of dendritic cells in a closed system using cell factories. J Immunol Methods. 2002;264:135–151.

    Article  CAS  PubMed  Google Scholar 

  40. Boczkowski D, Nair SK, Snyder D, et al. Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med. 1996;184:465–472.

    Article  CAS  PubMed  Google Scholar 

  41. Morel S, Levy F, Burlet-Schiltz O, et al. Processing of some antigens by the standard proteasome but not by the immunoproteasome results in poor presentation by dendritic cells. Immunity. 2000;12:107–117.

    Article  CAS  PubMed  Google Scholar 

  42. Van den Eynde BJ, Morel S . Differential processing of class-I-restricted epitopes by the standard proteasome and the immunoproteasome. Curr Opin Immunol. 2001;13:147–153.

    Article  CAS  PubMed  Google Scholar 

  43. Ashley DM, Faiola B, Nair S, et al. Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors. J Exp Med. 1997;186:1177–1182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Van Meirvenne S, Straetman L, Heirman C, et al. Efficient genetic modification of murine dendritic cells by electroporation with mRNA. Cancer Gene Ther. 2002;9:787–797.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Christine Huysmans, Danny Carels and Katja Michielsen for the help with DC cultures, Elsy Vaeremans and Peggy Verbuyst for the mRNA preparation, Karolien Claes for performing IFNγ-ELISPOT assays and Jos Theunissen for useful discussions.

This work was supported by grants to K T from the Fund for Scientific Research-Flanders (FWO-Vlaanderen), the Institute for Science & Technology (IWT), the Ministry of Science (IUAP/PAI IV), the FORTIS Bank and De Belgische Federatie voor Kankerbestrijding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kris Thielemans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuyaerts, S., Michiels, A., Corthals, J. et al. Induction of Influenza Matrix Protein 1 and MelanA-specific T lymphocytes in vitro using mRNA-electroporated dendritic cells. Cancer Gene Ther 10, 696–706 (2003). https://doi.org/10.1038/sj.cgt.7700622

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700622

Keywords

This article is cited by

Search

Quick links