Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lipoplexes with alkylphospholipid as new helper lipid for efficient in vitro and in vivo gene transfer in tumor therapy

Abstract

To improve liposomal gene transfer we investigated the influence of membrane-interacting alkylphospholipids (APLs) on gene transfer efficiency in vitro and in vivo using the LacZ reporter gene and the cytosine deaminase (CD) suicide gene. Liposomes were first optimized concerning the kind and amount of APL and the additional liposome components. Thus, an up to 270% increase in the transfer efficiency of the LacZ gene into HCT15 and HCT116 human colon carcinoma cells could be obtained in vitro compared to lipofectin-mediated transfection by using a lipoplex consisting of tetradecylphosphocholine/dimethyldioctadecylamine/cholesterol/dioleylphosphoethanolamine-liposomes and the pSV40-βGal-plasmid. The in vivo experiments revealed that alkylphospholipid-lipoplexes (APL–LPs) were similarly effective in the transfer of the LacZ gene into colon carcinoma as formulations consisting of lipofectin. Using the CD-gene in combination with APL-LPs resulted in a significantly stronger inhibition of C26 colon carcinoma growth compared to lipofectin-mediated gene transfer following treatment of mice with the prodrug 5-fluorocytosine. The results of this study demonstrate for the first time that the utilization of membrane-active APLs as component of the liposomal part of lipoplexes enhances the efficacy of gene therapy in vitro and in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Lasic DD . Recent developments in medical applications of liposomes: sterically stabilized liposomes in cancer therapy and gene delivery. J Controlled Release. 1997;48:203–222.

    Article  CAS  Google Scholar 

  2. Templeton NS, Lasic DD . New directions in liposome gene delivery. Mol Biotechnol. 1999;11:175–180.

    Article  CAS  Google Scholar 

  3. Zhao DD, Watarai S, Lee JT, et al. Gene transfection by cationic liposomes: comparison of the transfection efficiency of liposomes prepared from various positively charged lipids. Acta Med Okayama. 1997;51:149–154.

    CAS  PubMed  Google Scholar 

  4. Gao X, Huang L . Cationic liposome-mediated gene transfer. Gene Ther. 1995;2:710–722.

    CAS  PubMed  Google Scholar 

  5. Yang K, Clifton GL, Hayes RL . Gene therapy for central nervous system injury: the use of cationic liposomes: an invited review. J Neurotrauma. 1997;14:281–297.

    Article  CAS  Google Scholar 

  6. Lee RJ, Huang L . Lipidic vector systems for gene transfer. Crit Rev Ther Drug Carrier Syst. 1997;14:173–206.

    Article  CAS  Google Scholar 

  7. Maurer N, Mori A, Palmer L, et al. Lipid-based systems for the intracellular delivery of genetic drugs. Mol Membr Biol. 1999;16:129–140.

    Article  CAS  Google Scholar 

  8. Templeton NS, Lasic DD, Frederik PM, et al. Improved DNA: liposome complexes for increased systemic delivery and gene expression. Nat Biotechnol. 1997;15:647–652.

    Article  CAS  Google Scholar 

  9. Zhdanov RI, Kutsenko NG, Fedchenko VI . Nonviral methods of gene transfer in gene therapy. Vopr Med Khim. 1997;43:3–12.

    CAS  PubMed  Google Scholar 

  10. Banerjee R, Das PK, Srilakshmi GV, et al. Novel series of non-glycerol-based cationic transfection lipids for use in liposomal gene delivery. J Med Chem. 1999;42:4292–4299.

    Article  CAS  Google Scholar 

  11. Felgner PL, Barenholz Y, Behr JP, et al. Nomenclature for synthetic gene delivery systems [editorial]. Hum Gene Ther. 1997;8:511–512.

    Article  CAS  Google Scholar 

  12. Flechsler I, Surovoy A, Charisse K, et al. Comparison of antisense vectors and antisense oligonucleotides delivered by means of the new cationic lipids unifectin and maxifectin. Adv Exp Med Biol. 1998;451:469–472.

    Article  CAS  Google Scholar 

  13. Szala S, Missol E, Sochanik A, et al. The use of cationic liposomes DC-CHOL/DOPE and DDAB/DOPE for direct transfer of Escherichia coli cytosine deaminase gene into growing melanoma tumors. Gene Ther. 1996;3:1026–1031.

    CAS  PubMed  Google Scholar 

  14. Li S, Rizzo MA, Bhattacharya S, et al. Characterization of cationic lipid–protamine–DNA (LPD) complexes for intravenous gene delivery. Gene Ther. 1998;5:930–937.

    Article  CAS  Google Scholar 

  15. Sternberg B, Hong K, Zheng W, et al. Ultrastructural characterization of cationic liposome–DNA complexes showing enhanced stability in serum and high transfection activity in vivo. Biochim Biophys Acta. 1998;1375:23–35.

    Article  CAS  Google Scholar 

  16. Ergezinger K, Vehmeyer K, Unger C . Stimulation of human hematopoietic progenitor cells by the alkylphosphocholines hexadecylphosphocholine and hexadecyl-N,N,N-trimethyl-hexanolamine. Anticancer Res. 1999;19:3213–3219.

    CAS  PubMed  Google Scholar 

  17. Heesbeen EC, Verdonck LF, Hermans SW, et al. Alkyllysophospholipid ET-18-OCH3 acts as an activator of protein kinase C in HL-60 cells. FEBS Lett. 1991;290:231–234.

    Article  CAS  Google Scholar 

  18. Rakhmanova VA, MCintosh TJ, MacDonald RC . Effects of dioleoylphosphatidyl-ethanolamine on the activvity and structure of o-alkyl phosphatidylcholine-DNA transfection complexes. Chem Pharm Bull Tokyo. 2000;5:51–65.

    CAS  Google Scholar 

  19. Zeisig R, Eue I, Kosch M, et al. Preparation and properties of sterically stabilized hexadecylphosphocholine (miltefosine)–liposomes and influence of this modification on macrophage activation. Biochim Biophys Acta. 1996;1283:177–184.

    Article  Google Scholar 

  20. Brattain MG, Fine WD, Khaled FM, et al. Heterogeneity of malignant cells from a human colonic carcinoma. Cancer Res. 1981;41:1751–1756.

    CAS  PubMed  Google Scholar 

  21. Iwahashi T, Okochi E, Ono K, et al. Establishment of multidrug resistant human colorectal carcinoma HCT-15 cell lines and their properties. Anticancer Res. 1991;11:1309–1312.

    CAS  PubMed  Google Scholar 

  22. Lim K, Chae CB . A simple assay for DNA transfection by incubation of the cells in culture dishes with substrates for beta-galactosidase. Biotechniques. 1989;7:576–579.

    CAS  PubMed  Google Scholar 

  23. Walther W, Stein U, Fichtner I, et al. Nonviral in vivo gene delivery into tumors using a novel low volume jet-injection technology. Gene Ther. 2001;8:173–180.

    Article  CAS  Google Scholar 

  24. Mayhew E, Ahmad I, Bhatia S, et al. Stability of association of 1-O-octadecyl-2-O-methyl-sn-glycero-3-phosphocholine with liposomes is composition dependent. Biochim Biophys Acta. 1997;1329:139–148.

    Article  CAS  Google Scholar 

  25. Twentyman PR, Luscombe M . A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. Br J Cancer. 1987;56:279–285.

    Article  CAS  Google Scholar 

  26. Plowman J, Dykes DJ, Hollingshead M, et al. Human tumor xenograft models in NCI drug development. In: Teicher B, ed. Anticancer Drug Development Guide: Preclinical Screening, Clinical Trials, and Approval. Totowa, HJ: Humana Press Inc; 1997:101–125.

    Chapter  Google Scholar 

  27. Hilgard P, Stekar J, Klenner T, et al. Heterocyclic alkylphospholipids with an improved therapeutic range. Adv Exp Med Biol. 1996;416:157–164.

    Article  CAS  Google Scholar 

  28. Kudo I, Nojima S, Chang HW, et al. Antitumor activity of synthetic alkylphospholipids with or without PAF activity. Lipids 1987;22:862–867.

    Article  CAS  Google Scholar 

  29. Wang YZ, Liu XY, Wu LJ, et al. Antiproliferation effects of hexadecylphosphocholine on solid tumor and leukaemia selectively in vitro. Drugs Exp Clin Res. 1997;23:97–102.

    CAS  PubMed  Google Scholar 

  30. Zeisig R, Arndt D, Brachwitz H . Ether lipids—synthesis and application in tumor therapy. Pharmazie. 1990;45:809–818.

    CAS  PubMed  Google Scholar 

  31. Zeisig R, Jungmann S, Arndt D, et al. Antineoplastic activity in vitro of free and liposomal alkylphosphocholines. Anticancer Drugs. 1993;4:57–64.

    Article  CAS  Google Scholar 

  32. Munder PG, Westphal O . Antitumoral and other biomedical activities of synthetic ether lysophospholipids. Chem Immunol. 1990;49:206–235.

    CAS  PubMed  Google Scholar 

  33. Birchall JC, Kellaway IW, Mills SN . Physico-chemical characterisation and transfection efficiency of lipid-based gene delivery complexes. Int J Pharmacol. 1999;183:195–207.

    Article  CAS  Google Scholar 

  34. MacDonald RC, Rakhmanova VA, Choi KL, et al. O-ethylphosphatidylcholine: a metabolizable cationic phospholipid which is a serum-compatible DNA transfection agent. J Pharm Sci. 1999;88:896–904.

    Article  CAS  Google Scholar 

  35. Mok KW, Cullis PR . Structural and fusogenic properties of cationic liposomes in the presence of plasmid DNA. Biophys J. 1997;73:2534–2545.

    Article  CAS  Google Scholar 

  36. Ouatas T, Le Mevel S, Demeneix BA, et al. T3-dependent physiological regulation of transcription in the Xenopus tadpole brain studied by polyethylenimine based in vivo gene transfer. Int J Dev Biol. 1998;42:1159–1164.

    CAS  PubMed  Google Scholar 

  37. Peters MT, Brigham KL, King GA, et al. Optimization of cationic liposome-mediated gene transfer to human bronchial epithelial cells expressing wild-type or abnormal cystic fibrosis transmembrane conductance regulator (CFTR). Exp Lung Res. 1999;25:183–197.

    Article  CAS  Google Scholar 

  38. Stegmann T, Legendre JY . Gene transfer mediated by cationic lipids: lack of a correlation between lipid mixing and transfection. Biochim Biophys Acta. 1997;1325:71–79.

    Article  CAS  Google Scholar 

  39. Pollard H, Remy JS, Loussouarn G, et al. Polyethylenimine but not cationic lipids promotes transgene delivery to the nucleus in mammalian cells. J Biol Chem. 1998;273:7507–7511.

    Article  CAS  Google Scholar 

  40. Fasbender AJ, Zabner J, Welsh MJ . Optimization of cationic lipid-mediated gene transfer to airway epithelia. Am J Physiol. 1995;269:L45–L51.

    CAS  PubMed  Google Scholar 

  41. Simoes S, Slepushkin V, Pretzer E, et al. Transfection of human macrophages by lipoplexes via the combined use of transferrin and pH-sensitive peptides. J Leukoc Biol. 1999;65:270–279.

    Article  CAS  Google Scholar 

  42. Wong FM, Reimer DL, Bally MB . Cationic lipid binding to DNA: characterization of complex formation. Biochemistry. 1996;35:5756–5763.

    Article  CAS  Google Scholar 

  43. Hara T, Kuwasawa H, Aramaki Y, et al. Effects of fusogenic and DNA-binding amphiphilic compounds on the receptor-mediated gene transfer into hepatic cells by asialofetuin-labeled liposomes. Biochim Biophys Acta. 1996;1278:51–58.

    Article  Google Scholar 

  44. Farhood H, Serbina N, Huang L . The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer. Biochim Biophys Acta. 1995;1235:289–295.

    Article  Google Scholar 

Download references

Acknowledgements

The technical skills of AD Teppke and L Malcherek are gratefully acknowledged. We thank M Lemm and M Becker for performing the animal experiments. We further thank G Nöβner and P Hilgard from ASTA Medica for generously providing the alkylphospholipids and W. Uckert for kindly providing the pCMV/CD-1 Plasmid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Zeisig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeisig, R., Ress, A., Fichtner, I. et al. Lipoplexes with alkylphospholipid as new helper lipid for efficient in vitro and in vivo gene transfer in tumor therapy. Cancer Gene Ther 10, 302–311 (2003). https://doi.org/10.1038/sj.cgt.7700572

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700572

Keywords

This article is cited by

Search

Quick links