Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Replicative retroviral vectors for cancer gene therapy

Abstract

Poor efficiency of gene transfer into cancer cells constitutes the major bottleneck of current cancer gene therapy. We reasoned that because tumors are masses of rapidly dividing cells, they would be most efficiently transduced with vector systems allowing transgene propagation. We thus designed two replicative retrovirus-derived vector systems: one inherently replicative vector, and one defective vector propagated by a helper retrovirus. In vitro, both systems achieved very efficient transgene propagation. In immunocompetent mice, replicative vectors transduced >85% tumor cells, whereas defective vectors transduced <1% under similar conditions. It is noteworthy that viral propagation could be efficiently blocked by azido-thymidine, in vitro and in vivo. In a model of established brain tumors treated with suicide genes, replicative retroviral vectors (RRVs) were approximately 1000 times more efficient than defective adenoviral vectors. These results demonstrate the advantage and potential of RRVs and strongly support their development for cancer gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 3
Figure 1
Figure 2
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Vile RG, Russel SJ & Lemoine NR . Cancer gene therapy: hard lessons and new courses. Gene Ther. 2000; 7: 2–8.

    Article  CAS  PubMed  Google Scholar 

  2. Puumalainen AM, Vapalahti M & Agrawal RS, et al. Beta-galactosidase gene transfer to human malignant glioma in vivo using replication-deficient retroviruses and adenoviruses. Hum Gene Ther. 1998; 9: 1769–1774.

    Article  CAS  PubMed  Google Scholar 

  3. Harsh GR, Deisboeck TS & Louis DN, et al. Thymidine kinase activation of ganciclovir in recurrent malignant gliomas: a gene-marking and neuropathological study. J Neurosurg. 2000; 92: 804–811.

    Article  CAS  PubMed  Google Scholar 

  4. Southam CM & Moore AE . Clinical studies of viruses as antineoplastic agents, with particular reference to Egypt 101 virus. Cancer. 1952; 1025–1034, (September)

    Article  CAS  PubMed  Google Scholar 

  5. Smith RR, Huebner RJ & Rowe WP, et al. Studies on the use of viruses in the treatment of carcinoma of the cervix. Cancer. 1956; 1211–1218, (November–December)

    Article  PubMed  Google Scholar 

  6. Asada T . Treatment of human cancer with mumps virus. Cancer. 1974; 34: 1907–1928.

    Article  CAS  PubMed  Google Scholar 

  7. Russel SJ . Replicating vectors for gene therapy of cancer: risks, limitations and prospects. Eur J Cancer. 1994; 30A: 1165–1171.

    Article  Google Scholar 

  8. Martuza RL, Malick A & Markert JM, et al. Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science. 1991; 252: 854–856.

    Article  CAS  PubMed  Google Scholar 

  9. Lorence RM, Katubig BB & Reichard KW, et al. Complete regression of human fibrosarcoma xenografts after local Newcastle disease virus therapy. Cancer Res. 1994; 54: 6017–6021.

    CAS  PubMed  Google Scholar 

  10. Boviatsis EJ, Park JS & Sena-Esteves M, et al. Long-term survival of rats harboring brain neoplasms treated with ganciclovir and a herpes simplex virus vector that retains an intact thymidine kinase gene. Cancer Res. 1994; 54: 5745–5751.

    CAS  PubMed  Google Scholar 

  11. Bischoff JR, Kirn DH & Williams A, et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science. 1996; 274: 373–376.

    Article  CAS  PubMed  Google Scholar 

  12. You L, Yang CT & Jablous DM . ONYX-015 works synergistically with chemotherapy in lung cancer cell lines and primary cultures freshly made from lung cancer patients. Cancer Res. 2000; 60: 1009–1013.

    CAS  PubMed  Google Scholar 

  13. Khuri FR, Nemunaitis J & Ganly I, et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat Med. 2000; 6: 879–885.

    Article  CAS  PubMed  Google Scholar 

  14. Wildner O, Morris JC & Vahania NN, et al. Adenoviral vectors capable of replication improve the efficacy of HSVtk/GCV suicide gene therapy of cancer. Gene Ther. 1999; 6: 57–62.

    Article  CAS  PubMed  Google Scholar 

  15. Rogulski KR, Wing MS & Paielli DL, et al. Double suicide gene therapy augments the antitumor activity of a replication-competent lytic adenovirus through enhanced cytotoxicity and radiosensitization. Hum Gene Ther. 2000; 11: 67–76.

    Article  CAS  PubMed  Google Scholar 

  16. Alemany R, Balague C & Curiel DT . Replicative adenoviruses for cancer therapy. Nat Biotechnol. 2000; 18: 723–727.

    Article  CAS  PubMed  Google Scholar 

  17. Sauthoff H, Heitner S & Rom WN, et al. Deletion of the adenoviral E1b-19 kD gene enhances tumor cell killing of a replicating adenoviral vector. Hum Gene Ther. 2000; 11: 379–388.

    Article  CAS  PubMed  Google Scholar 

  18. Chaisomchit S, Tyrrell DLJ & Chang LJ . Development of replicative and nonreplicative hepatitis B virus vectors. Gene Ther. 1997; 4: 1330–1340.

    Article  CAS  PubMed  Google Scholar 

  19. Aghi M, Chou TC & Suling K, et al. Multimodal cancer treatment mediated by a replicating oncolytic virus that delivers the oxazaphosphorine/rat cytochrome P450 2B1 and ganciclovir/herpes simplex virus thymidine kinase gene therapies. Cancer Res. 1999; 59: 3861–3865.

    CAS  PubMed  Google Scholar 

  20. Todo T, Rabkin SD & Sundaresan P, et al. Systemic antitumor immunity in experimental brain tumor therapy using a multimutated, replication-competent herpes simplex virus. Hum Gene Ther. 1999; 10: 2741–2755.

    Article  CAS  PubMed  Google Scholar 

  21. Weber E, Anderson WF & Kasahara N . Recent advances in retrovirus vector–mediated gene therapy: teaching an old vector new tricks. Curr Opin Mol Ther. 2001; 3: 439–453.

    CAS  PubMed  Google Scholar 

  22. Tyler KL & Fields BN . Pathogenesis of viral infection. In: Fields BN, Knippe DM, eds. Virology, 2nd ed. New York, NY: Raven Press; 1990; 191–240.

    Google Scholar 

  23. Miller DG, Adam MA & Miller AD . Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol. 1990; 10: 4239–4242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mitsuya H & Broder S . Strategies for antiviral therapy in AIDS. Nature. 1987; 325: 773–778.

    Article  CAS  PubMed  Google Scholar 

  25. Petropoulos CJ, Payne W & Salter DW, et al. Appropriate in vivo expression of a muscle-specific promoter by using avian retroviral vectors for gene transfer [corrected]. J Virol. 1992; 66: 3391–3397.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Takamiya Y, Short MP & Moolten FL, et al. An experimental model of retrovirus gene therapy for malignant brain tumors. J Neurosurg. 1993; 79: 104–110.

    Article  CAS  PubMed  Google Scholar 

  27. Logg CR, Tai CK & Logg A, et al. A uniquely stable replication-competent retrovirus vector achieves efficient gene delivery in vitro and in solid tumors. Hum Gene Ther. 2001; 12: 921–932.

    Article  CAS  PubMed  Google Scholar 

  28. Loubière L, Tiraby M & Cazaux C, et al. The equine herpes virus 4 thymidine kinase is a better suicide gene than the human herpes virus 1 thymidine kinase. Gene Ther. 1999; 6: 1638–1642.

    Article  PubMed  Google Scholar 

  29. Colicelli J & Goff SP . Sequence and spacing requirements of a retrovirus integration site. J Mol Biol. 1988; 199: 47–59.

    Article  CAS  PubMed  Google Scholar 

  30. Ott D, Friedrich R & Rein A . Sequence analysis of amphotropic and 10A1 murine leukemia viruses: close relationship to mink cell focus-inducing viruses. J Virol. 1990; 64: 757–766.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Cazaux C, Tiraby M & Loubière L, et al. Phosphorylation and cytotoxicity of therapeutic nucleoside analogues: a comparison of α and γ herpesvirus thymidine kinase suicide genes. Cancer Gene Ther. 1998; 5: 83–91.

    CAS  PubMed  Google Scholar 

  32. Dewey RA, Southgate TD & Morelli A, et al. Adenoviral-mediated suicide gene therapy using the CNS-1 rat glioma model. Abstr Neurosci. 1997;

  33. Dewey RA, Morrissey G & Cowsill CM, et al. Chronic brain inflammation and persistent herpes simplex virus 1 thymidine kinase expression in survivors of syngeneic glioma treated by adenovirus-mediated gene therapy: implications for clinical trials. Nat Med. 1999; 5: 1256–1263.

    Article  CAS  PubMed  Google Scholar 

  34. Lowenstein PR, Shering AF & Bain D, et al. The use of adenovirus vectors to transfer genes to identified brain cells in vitro. In: Lowenstein R, Enguist LW, eds. Protocols for Gene Transfer in Neuroscience: Towards Gene Therapy of Neurological Disorders, 2nd ed. New York: Wiley; 1996; 93–114.

    Google Scholar 

  35. Gagandeep S, Brew R & Green B, et al. Prodrug-activated gene therapy: involvement of an immunological component in the “bystander effect”. Cancer Gene Ther. 1996; 3: 83–88.

    CAS  PubMed  Google Scholar 

  36. Martin F, Caignard A & Jeannin JF, et al. Selection by trypsin of two sublines of rat colon cancer cells forming progressive or regressive tumors. Int J Cancer. 1983; 32: 623–627.

    Article  CAS  PubMed  Google Scholar 

  37. Kruse CA, Molleston MC & Parks EP, et al. A rat glioma model, CNS-1, with invasive characteristics similar to those of human gliomas: a comparison to 9L gliosarcoma. J Neuro-Oncol. 1994; 22: 191–200.

    Article  CAS  Google Scholar 

  38. Ravassard P, Vallin J & Mallet J, et al. Relax promotes ectopic neuronal differentiation in Xenopus embryos. Proc Natl Acad Sci USA. 1997; 94: 8602–8605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Coffin JM . Retroviridae and their replication. In: Fields BN, Knippe DM, eds. Virology, 2nd ed. New York, NY: Raven Press; 1990; 1437–1500.

    Google Scholar 

  40. Ruprecht RM, O'Brien LG & Rossoni LD, et al. Suppression of mouse viraemia and retroviral disease by 3′-azido-3′-deoxythymidine. Nature. 1986; 323: 467–469.

    Article  CAS  PubMed  Google Scholar 

  41. St. Clair MH, Lambe CU & Furman PA . Inhibition by ganciclovir of cell growth and DNA synthesis of cells biochemically transformed with herpesvirus genetic information. Antimicrob Agents Chemother. 1987; 31: 844–849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Freeman SM, Whartenby KA & Freeman JL, et al. In situ use of suicide genes for cancer therapy. Semin Oncol. 1996; 23: 31–45.

    CAS  PubMed  Google Scholar 

  43. Caruso M, Panis Y & Gagandeep S, et al. Regression of established macroscopic liver metastases after in situ transduction of a suicide gene. Proc Natl Acad Sci USA. 1993; 90: 7024–7028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Freeman SM, Addoud CN & Whartenby KA, et al. The “Bystander Effect”: tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res. 1993; 53: 5274–5283.

    CAS  PubMed  Google Scholar 

  45. Kianmanesh AR, Perrin H & Panis Y, et al. A “distant” bystander effect of suicide gene therapy: regression of nontransduced tumors together with a distant transduced tumor. Hum Gene Ther. 1997; 8: 1807–1814.

    Article  CAS  PubMed  Google Scholar 

  46. Dilber MS, Phelan A & Aints A, et al. Intercellular delivery of thymidine kinase prodrug activating enzyme by the herpes simplex virus protein, VP22. Gene Ther. 1999; 6: 12–21.

    Article  CAS  PubMed  Google Scholar 

  47. Barba D, Hardin J & Sadelain M, et al. Development of anti-tumor immunity following thymidine kinase–mediated killing of experimental brain tumors. Proc Natl Acad Sci USA. 1994; 91: 4348–4352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vile RG, Nelson JA & Castelden S, et al. Systemic gene therapy of murine melanoma using tissue specific expression of the HSVtk gene involves an immune component. Cancer Res. 1994; 54: 6228–6234.

    CAS  PubMed  Google Scholar 

  49. Ram Z, Culver KW & Oshiro EM, et al. Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells. Nat Med. 1997; 3: 1354–1361.

    Article  CAS  PubMed  Google Scholar 

  50. Klatzmann D, Valery CA & Bensimon G, et al. A phase I/II study of herpes simplex virus type 1 thymidine kinase “suicide” gene therapy for recurrent glioblastoma. Study group on gene therapy for glioblastoma. Hum Gene Ther. 1998; 9: 2595–2604.

    CAS  PubMed  Google Scholar 

  51. Valery CA, Seilhean D & Boyer O, et al. Long-term survival after gene therapy for a recurrent glioblastoma. Neurology. 2002; 58: 1109–1112.

    Article  CAS  PubMed  Google Scholar 

  52. Shand N, Weber F & Mariani L, et al. A phase 1–2 clinical trial of gene therapy for recurrent glioblastoma multiforme by tumor transduction with the herpes simplex thymidine kinase gene followed by ganciclovir. GLI328 European–Canadian Study Group. Hum Gene Ther. 1999; 10: 2325–2335.

    Article  CAS  PubMed  Google Scholar 

  53. Kozack CA & Ruscetti S . Retroviruses in rodents. In: Levy JA, ed. The Retroviridae, 2nd ed. New York, NY: Plenum; 1992; 405–481.

    Chapter  Google Scholar 

  54. Donahue RE, Kessler SW & Bodine D, et al. Helper virus induced T cell lymphoma in nonhuman primates after retroviral mediated gene transfer. J Exp Med. 1992; 176: 1125–1135.

    Article  CAS  PubMed  Google Scholar 

  55. Fiore JR, Zhang YJ & Bjorndal A, et al. Biological correlates of HIV-1 heterosexual transmission. AIDS. 1997; 11: 1089–1094.

    Article  CAS  PubMed  Google Scholar 

  56. Vernazza PL, Troiani L & Flepp MJ, et al. Potent antiretroviral treatment of HIV-infection results in suppression of the seminal shedding of HIV. The Swiss HIV Cohort Study. AIDS. 2000; 14: 117–121.

    Article  CAS  PubMed  Google Scholar 

  57. Diaz RM, Eisen T & Hart IR, et al. Exchange of viral promoter/enhancer elements with heterologous regulatory sequences generates targeted hybrid long terminal repeat vectors for gene therapy of melanoma. J Virol. 1998; 72: 789–795.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Page SM & Brownlee GG . Differentiation-specific enhancer activity in transduced keratinocytes: a model for epidermal gene therapy. Gene Ther. 1998; 5: 394–402.

    Article  CAS  PubMed  Google Scholar 

  59. Jager U, Zhao Y & Porter CD . Endothelial cell–specific transcriptional targeting from a hybrid long terminal repeat retrovirus vector containing human prepro-endothelin-1 promoter sequences. J Virol. 1999; 73: 9702–9709.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhao-Emonet JC, Marodon G & Pioche-Durieu C, et al. T cell–specific expression from Mo-MLV retroviral vectors containing a CD4 mini-promoter/enhancer. J Gene Med. 2000; 2: 416–425.

    Article  CAS  PubMed  Google Scholar 

  61. Verhoef K, Marzio G & Hillen W, et al. Strict control of human immunodeficiency virus type 1 replication by a genetic switch: Tet for Tat. J Virol. 2001; 75: 979–987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Russell SJ & Cosset FL . Modifying the host range properties of retroviral vectors. J Gene Med. 1999; 1: 300–311.

    Article  CAS  PubMed  Google Scholar 

  63. Peng KW & Russell SJ . Viral vector targeting. Curr Opin Biotechnol. 1999; 10: 454–457.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank FL Cosset for helpful comments. We also thank A Morel and F Foata for their participation in some initial experiments. This work was supported by the Université Pierre et Marie Curie (UPMC), Centre National de la Recherche Scientifique (CNRS), European Grant QLK3-CT-1999-00364 Génopoïétic, Association Française contre les Myopathies (AFM), Association pour la Recherche sur les Déficits Immunitaires Viro-Induits, and Assistance Publique — Hôpitaux de Paris.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Klatzmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solly, S., Trajcevski, S., Frisén, C. et al. Replicative retroviral vectors for cancer gene therapy. Cancer Gene Ther 10, 30–39 (2003). https://doi.org/10.1038/sj.cgt.7700521

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700521

Keywords

This article is cited by

Search

Quick links