Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Immunosuppressive effects of interleukin-12 coexpression in melanoma antigen gene–modified dendritic cell vaccines

Abstract

Genetic immunotherapy with tumor antigen gene–modified dendritic cells (DC) generates robust immunity, although antitumor protection is not complete in all models. Previous experience in a model in which C57BL/6 mice immunized with DC transduced with adenoviral vectors expressing MART-1 demonstrated a 20–40% complete protection to a tumor challenge with B16 melanoma cells. Tumors that did develop in immunized mice had slower growth kinetics compared to tumors implanted in naïve mice. In the present study, we wished to determine if the supraphysiological production of the Th1-skewing cytokine interleukin-12 (IL-12) could enhance immune activation and antitumor protection in this model. In a series of experiments immunizing mice with DC cotransduced with MART-1 and IL-12, antitumor protection and antigen-specific splenocyte cytotoxicity and interferon γ production inversely correlated with the amount of IL-12 produced by DC. This adverse effect of IL-12 could not be explained by a direct cytotoxic effect of natural killer cells directed towards DC, nor the production of nitric oxide leading to down-regulation of the immune response — the two mechanisms previously recognized to explain immune-suppressive effects of IL-12–based vaccine therapy. In conclusion, in this animal model, IL-12 production by gene-modified DC leads to a cytokine-induced dose-dependent inhibition of antigen-specific antitumor protection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ribas A, Butterfield LH, McBride WH et al. Genetic immunization for the melanoma antigen MART-1/Melan-A using recombinant adenovirus-transduced murine dendritic cells Cancer Res 1997 57: 2865–2869

    CAS  PubMed  Google Scholar 

  2. Brossart P, Goldrath AW, Butz EA, Martin S, Bevan MJ . Virus-mediated delivery of antigenic epitopes into dendritic cells as a means to induce CTL J Immunol 1997 158: 3270–3276

    CAS  PubMed  Google Scholar 

  3. Specht JM, Wang G, Do MT et al. Dendritic cells retrovirally transduced with a model antigen gene are therapeutically effective against established pulmonary metastases J Exp Med 1997 186: 1213–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Song W, Kong HL, Carpenter H et al. Dendritic cells genetically modified with an adenovirus vector encoding the cDNA for a model antigen induce protective and therapeutic antitumor immunity J Exp Med 1997 186: 1247–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gong J, Chen L, Chen D et al. Induction of antigen-specific antitumor immunity with adenovirus-transduced dendritic cells Gene Ther 1997 4: 1023–1028

    Article  CAS  PubMed  Google Scholar 

  6. Perez-Diez A, Butterfield LH, Li L, Chakraborty NG, Economou JS, Mukherji B . Generation of CD8+ and CD4+ T cell responses to dendritic cells genetically engineered to express the MART-1/Melan-A gene Cancer Res 1998 58: 5305–5309

    CAS  PubMed  Google Scholar 

  7. Ribas A, Butterfield LH, McBride WH et al. Characterization of antitumor immunization to a defined melanoma antigen using genetically engineered murine dendritic cells Cancer Gene Ther 1999 6: 523–536

    Article  CAS  PubMed  Google Scholar 

  8. Banchereau J, Steinman RM . Dendritic cells and the control of immunity Nature 1998 392: 245–252

    Article  CAS  PubMed  Google Scholar 

  9. Kirk CJ, Mule JJ . Gene-modified dendritic cells for use in tumor vaccines Hum Gene Ther 2000 11: 797–806

    Article  CAS  PubMed  Google Scholar 

  10. Ribas A, Butterfield LH, Glaspy JA, Economou JS . Cancer immunotherapy using gene-modified dendritic cells Curr Gene Ther 2002 2: 57–78

    Article  CAS  PubMed  Google Scholar 

  11. Ribas A, Butterfield LH, Hu B et al. Generation of T-cell immunity to a murine melanoma using MART-1–engineered dendritic cells J Immunother 2000 23: 59–66

    Article  CAS  PubMed  Google Scholar 

  12. Ribas A, Butterfield LH, Hu B et al. Immune deviation and Fas-mediated deletion limit antitumor activity after multiple dendritic cell vaccinations in mice Cancer Res 2000 60: 2218–2224

    CAS  PubMed  Google Scholar 

  13. Ribas A, Butterfield LH, Amarnani S et al. CD40 crosslinking bypasses the absolute requirement for CD4 cells after immunization with melanoma antigen gene-modified dendritic cells Cancer Res 2001 61: 8787–8793

    CAS  PubMed  Google Scholar 

  14. Zhai Y, Yang JC, Spiess P et al. Cloning and characterization of the genes encoding the murine homologues of the human melanoma antigens MART1 and gp100 J Immunother 1997 20: 15–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kobayashi M, Fitz L, Ryan M et al. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes J Exp Med 1989 170: 827–845

    Article  CAS  PubMed  Google Scholar 

  16. Gubler U, Chua AO, Schoenhaut DS et al. Coexpression of two distinct genes is required to generate secreted bioactive cytotoxic lymphocyte maturation factor Proc Natl Acad Sci USA 1991 88: 4143–4147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Scott P, Trinchieri G . IL-12 as an adjuvant for cell-mediated immunity Semin Immunol 1997 9: 285–291

    Article  CAS  PubMed  Google Scholar 

  18. Shurin MR, Esche C, Peron JM, Lotze MT . Antitumor activities of IL-12 and mechanisms of action Chem Immunol 1997 68: 153–174

    Article  CAS  PubMed  Google Scholar 

  19. Melero I, Mazzolini G, Narvaiza I, Qian C, Chen L, Prieto J . IL-12 gene therapy for cancer: in synergy with other immunotherapies Trends Immunol 2001 22: 113–115

    Article  CAS  PubMed  Google Scholar 

  20. Rosenberg SA, Yang JC, Schwartzentruber DJ et al. Impact of cytokine administration on the generation of antitumor reactivity in patients with metastatic melanoma receiving a peptide vaccine J Immunol 1999 163: 1690–1695

    CAS  PubMed  Google Scholar 

  21. Gajewski TF, Fallarino F, Ashikari A, Sherman M . Immunization of HLA-A2+ melanoma patients with MAGE-3 or MelanA peptide-pulsed autologous peripheral blood mononuclear cells plus recombinant human interleukin 12 Clin Cancer Res 2001 7: 895s–901s

    CAS  PubMed  Google Scholar 

  22. Lee P, Wang F, Kuniyoshi J et al. Effects of interleukin-12 on the immune response to a multipeptide vaccine for resected metastatic melanoma J Clin Oncol 2001 19: 3836–3847

    Article  CAS  PubMed  Google Scholar 

  23. Butterfield LH, Jilani SM, Chakraborty NG et al. Generation of melanoma-specific cytotoxic T lymphocytes by dendritic cells transduced with a MART-1 adenovirus J Immunol 1998 161: 5607–5613

    CAS  PubMed  Google Scholar 

  24. Bramson JL, Hitt M, Addison CL, Muller WJ, Gauldie J, Graham FL . Direct intratumoral injection of an adenovirus expressing interleukin-12 induces regression and long-lasting immunity that is associated with highly localized expression of interleukin-12 Hum Gene Ther 1996 7: 1995–2002

    Article  CAS  PubMed  Google Scholar 

  25. Andrews KJ, Ribas A, Butterfield LH et al. Adenovirus–interleukin-12–mediated tumor regression in a murine hepatocellular carcinoma model is not dependent on CD1-restricted natural killer T cells Cancer Res 2000 60: 6457–6464

    CAS  PubMed  Google Scholar 

  26. Inaba K, Inaba M, Romani N et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor J Exp Med 1992 176: 1693–1702

    Article  CAS  PubMed  Google Scholar 

  27. Bush PA, Gonzalez NE, Griscavage JM, Ignarro LJ . Nitric oxide synthase from cerebellum catalyzes the formation of equimolar quantities of nitric oxide and citrulline from L-arginine Biochem Biophys Res Commun 1992 185: 960–966

    Article  CAS  PubMed  Google Scholar 

  28. Vollmer CM Jr, Eilber FC, Butterfield LH et al. Alpha-fetoprotein–specific genetic immunotherapy for hepatocellular carcinoma Cancer Res 1999 59: 3064–3067

    CAS  PubMed  Google Scholar 

  29. Wan Y, Bramson J, Pilon A, Zhu Q, Gauldie J . Genetically modified dendritic cells prime autoreactive T cells through a pathway independent of CD40L and interleukin 12: implications for cancer vaccines Cancer Res 2000 60: 3247–3253

    CAS  PubMed  Google Scholar 

  30. Koblish HK, Hunter CA, Wysocka M, Trinchieri G, Lee WM . Immune suppression by recombinant interleukin (rIL)-12 involves interferon gamma induction of nitric oxide synthase 2 (iNOS) activity: inhibitors of NO generation reveal the extent of rIL-12 vaccine adjuvant effect J Exp Med 1998 188: 1603–1610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kurzawa H, Wysocka M, Aruga E, Chang AE, Trinchieri G, Lee WM . Recombinant interleukin 12 enhances cellular immune responses to vaccination only after a period of suppression Cancer Res 1998 58: 491–499

    CAS  PubMed  Google Scholar 

  32. Munder M, Mallo M, Eichmann K, Modolell M . Murine macrophages secrete interferon gamma upon combined stimulation with interleukin (IL)-12 and IL-18: a novel pathway of autocrine macrophage activation J Exp Med 1998 187: 2103–2108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Medot-Pirenne M, Heilman MJ, Saxena M, McDermott PE, Mills CD . Augmentation of an antitumor CTL response in vivo by inhibition of suppressor macrophage nitric oxide J Immunol 1999 163: 5877–5882

    CAS  PubMed  Google Scholar 

  34. Bottomly K . T cells and dendritic cells get intimate (comment) Science 1999 283: 1124–1125

    Article  CAS  PubMed  Google Scholar 

  35. Rissoan MC, Soumelis V, Kadowaki N et al. Reciprocal control of T helper cell and dendritic cell differentiation (see comments) Science 1999 283: 1183–1186

    Article  CAS  PubMed  Google Scholar 

  36. Mosmann TR, Coffman RL . TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties Annu Rev Immunol 1989 7: 145–173

    Article  CAS  PubMed  Google Scholar 

  37. Koch F, Stanzl U, Jennewein P et al. High level IL-12 production by murine dendritic cells: upregulation via MHC class II and CD40 molecules and downregulation by IL-4 and IL-10 J Exp Med 1996 184: 741–746

    Article  CAS  PubMed  Google Scholar 

  38. Hochrein H, Shortman K, Vremec D, Scott B, Hertzog P, O'Keeffe M . Differential production of IL-12, IFN-alpha, and IFN-gamma by mouse dendritic cell subsets J Immunol 2001 166: 5448–5455

    Article  CAS  PubMed  Google Scholar 

  39. Bianchi R, Grohmann U, Belladonna ML et al. IL-12 is both required and sufficient for initiating T cell reactivity to a class I–restricted tumor peptide (P815AB) following transfer of P815AB-pulsed dendritic cells J Immunol 1996 157: 1589–1597

    CAS  PubMed  Google Scholar 

  40. Gabrilovich DI, Cunningham HT, Carbone DP . IL-12 and mutant P53 peptide-pulsed dendritic cells for the specific immunotherapy of cancer J Immunother Emphas Immunol 1996 19: 414–418

    Article  CAS  Google Scholar 

  41. Grohmann U, Bianchi R, Ayroldi E et al. A tumor-associated and self antigen peptide presented by dendritic cells may induce T cell anergy in vivo, but IL-12 can prevent or revert the anergic state J Immunol 1997 158: 3593–3602

    CAS  PubMed  Google Scholar 

  42. Fallarino F, Uyttenhove C, Boon T, Gajewski TF . Improved efficacy of dendritic cell vaccines and successful immunization with tumor antigen peptide-pulsed peripheral blood mononuclear cells by coadministration of recombinant murine interleukin-12 Int J Cancer 1999 80: 324–333

    Article  CAS  PubMed  Google Scholar 

  43. Zitvogel L, Couderc B, Mayordomo JI, Robbins PD, Lotze MT, Storkus WJ . IL-12–engineered dendritic cells serve as effective tumor vaccine adjuvants in vivo Ann NY Acad Sci 1996 795: 284–293

    Article  CAS  PubMed  Google Scholar 

  44. Melero I, Duarte M, Ruiz J et al. Intratumoral injection of bone-marrow derived dendritic cells engineered to produce interleukin-12 induces complete regression of established murine transplantable colon adenocarcinomas Gene Ther 1999 6: 1779–1784

    Article  CAS  PubMed  Google Scholar 

  45. Ahuja SS, Reddick RL, Sato N et al. Dendritic cell (DC)–based anti-infective strategies: DCs engineered to secrete IL-12 are a potent vaccine in a murine model of an intracellular infection J Immunol 1999 163: 3890–3897

    CAS  PubMed  Google Scholar 

  46. Furumoto K, Arii S, Yamasaki S et al. Spleen-derived dendritic cells engineered to enhance interleukin-12 production elicit therapeutic antitumor immune responses Int J Cancer 2000 87: 665–672

    Article  CAS  PubMed  Google Scholar 

  47. Liu B, Ye S, He P, Xue Q, Gao D, Tang Z . Antitumor activities in vivo of interleukin-12 gene modified dendritic cells in murine models Zhonghua Ganzangbing Zazhi 2000 8: 350–351

    CAS  PubMed  Google Scholar 

  48. Akiyama Y, Watanabe M, Maruyama K, Ruscetti FW, Wiltrout RH, Yamaguchi K . Enhancement of antitumor immunity against B16 melanoma tumor using genetically modified dendritic cells to produce cytokines Gene Ther 2000 7: 2113–2121

    Article  CAS  PubMed  Google Scholar 

  49. Shimizu T, Berhanu A, Redlinger RE Jr, Watkins S, Lotze MT, Barksdale EM Jr . Interleukin-12 transduced dendritic cells induce regression of established murine neuroblastoma J Pediatr Surg 2001 36: 1285–1292

    Article  CAS  PubMed  Google Scholar 

  50. Nishioka Y, Hirao M, Robbins PD, Lotze MT, Tahara H . Induction of systemic and therapeutic antitumor immunity using intratumoral injection of dendritic cells genetically modified to express interleukin 12 Cancer Res 1999 59: 4035–4041

    CAS  PubMed  Google Scholar 

  51. Nastala CL, Edington HD, McKinney TG et al. Recombinant IL-12 administration induces tumor regression in association with IFN-gamma production J Immunol 1994 153: 1697–1706

    CAS  PubMed  Google Scholar 

  52. Brunda MJ, Luistro L, Rumennik L et al. Interleukin-12: murine models of a potent antitumor agent Ann NY Acad Sci 1996 795: 266–274

    Article  CAS  PubMed  Google Scholar 

  53. Chen L, Chen D, Block E, O'Donnell M, Kufe DW, Clinton SK . Eradication of murine bladder carcinoma by intratumor injection of a bicistronic adenoviral vector carrying cDNAs for the IL-12 heterodimer and its inhibition by the IL-12 p40 subunit homodimer J Immunol 1997 159: 351–359

    CAS  PubMed  Google Scholar 

  54. Cui J, Shin T, Kawano T et al. Requirement for Valpha14 NKT cells in IL-12–mediated rejection of tumors Science 1997 278: 1623–1626

    Article  CAS  PubMed  Google Scholar 

  55. Trinchieri G . Immunobiology of interleukin-12 Immunol Res 1998 17: 269–278

    Article  CAS  PubMed  Google Scholar 

  56. Kaplan MH, Sun YL, Hoey T, Grusby MJ . Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice Nature 1996 382: 174–177

    Article  CAS  PubMed  Google Scholar 

  57. Voest EE, Kenyon BM, O'Reilly MS, Truitt G, D'Amato RJ, Folkman J . Inhibition of angiogenesis in vivo by interleukin 12 (see comments) J Natl Cancer Inst 1995 87: 581–586

    Article  CAS  PubMed  Google Scholar 

  58. Fernandez NC, Lozier A, Flament C et al. Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo Nat Med 1999 5: 405–411

    Article  CAS  PubMed  Google Scholar 

  59. Lanier LL . NK cell receptors Annu Rev Immunol 1998 16: 359–393

    Article  CAS  PubMed  Google Scholar 

  60. Chambers BJ, Salcedo M, Ljunggren HG . Triggering of natural killer cells by the costimulatory molecule CD80 (B7-1) Immunity 1996 5: 311–317

    Article  CAS  PubMed  Google Scholar 

  61. Geldhof AB, Moser M, Lespagnard L, Thielemans K, De Baetselier P . Interleukin-12–activated natural killer cells recognize B7 costimulatory molecules on tumor cells and autologous dendritic cells Blood 1998 91: 196–206

    CAS  PubMed  Google Scholar 

  62. Orange JS, Wolf SF, Biron CA . Effects of IL-12 on the response and susceptibility to experimental viral infections J Immunol 1994 152: 1253–1264

    CAS  PubMed  Google Scholar 

  63. Noguchi Y, Richards EC, Chen YT, Old LJ . Influence of interleukin 12 on p53 peptide vaccination against established Meth A sarcoma Proc Natl Acad Sci USA 1995 92: 2219–2223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Williams NJ, Harvey JJ, Duncan I, Booth RF, Knight SC . Interleukin-12 restores dendritic cell function and cell-mediated immunity in retrovirus-infected mice Cell Immunol 1998 183: 121–130

    Article  CAS  PubMed  Google Scholar 

  65. Lasarte JJ, Corrales FJ, Casares N et al. Different doses of adenoviral vector expressing IL-12 enhance or depress the immune response to a coadministered antigen: the role of nitric oxide J Immunol 1999 162: 5270–5277

    CAS  PubMed  Google Scholar 

  66. Gao JJ, Filla MB, Lorsbach RB et al. Prolonged exposure of mouse macrophages to IFN-beta suppresses transcription of the inducible nitric oxide synthase gene: altered availability of transcription factor Stat1alpha Eur J Immunol 2000 30: 1551–1561

    Article  CAS  PubMed  Google Scholar 

  67. Mazzolini G, Qian C, Narvaiza I et al. Adenoviral gene transfer of interleukin 12 into tumors synergizes with adoptive T cell therapy both at the induction and effector level Hum Gene Ther 2000 11: 113–125

    Article  CAS  PubMed  Google Scholar 

  68. Mazzolini G, Qian C, Xie X et al. Regression of colon cancer and induction of antitumor immunity by intratumoral injection of adenovirus expressing interleukin-12 Cancer Gene Ther 1999 6: 514–522

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by NIH/NCI Grants RO1 CA77623, RO1 CA79976, T32 CA75956, and K12 CA76905 (all to JSE), the Stacy and Evelyn Kesselman Research Fund, and the Monkarsh Fund. AR is a recipient of an American Society of Clinical Oncology Career Development Award and K23 CA93376.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James S Economou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribas, A., Amarnani, S., Buga, G. et al. Immunosuppressive effects of interleukin-12 coexpression in melanoma antigen gene–modified dendritic cell vaccines. Cancer Gene Ther 9, 875–883 (2002). https://doi.org/10.1038/sj.cgt.7700512

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700512

Keywords

This article is cited by

Search

Quick links