Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lentiviral-mediated gene delivery in human monocyte-derived dendritic cells: Optimized design and procedures for highly efficient transduction compatible with clinical constraints

Abstract

Gene delivery to dendritic cells (DCs) could represent a powerful method of inducing potent, long-lasting immunity. Although recent studies underline the intense interest in lentiviral vector–mediated monocyte-derived DC transduction, efficient gene transfer methods currently require high multiplicities of infection and are not compatible with clinical constraints. We have designed a strategy to optimize the efficiency and clinical relevance of this approach. Initially, using a third generation lentiviral vector expressing green fluorescent protein, we found that modifying the vector design, the DC precursor cell type, and the DC differentiation stage for transduction results in sustained transgene expression in 75–85% of immature DCs (transduction at a multiplicity of infection of 8). This high efficiency was reproducible among different donors irrespective of whether DCs were expanded from fresh or cryopreserved CD14+ precursors. We then developed procedures that bypass the need for highly concentrated lentiviral preparations and the addition of polybrene to achieve efficient transduction. DCs transduced under these conditions retain their immature phenotype and immunostimulatory potential in both autologous and allogeneic settings. Furthermore, genetically modified DCs maintain their ability to respond to maturation signals and secrete bioactive IL-12, indicating that they are fully functional. Finally, the level of transgene expression is preserved in the therapeutically relevant mature DCs, demonstrating that there is neither promoter-silencing nor loss of transduced cells during maturation. The novel approach described should advance lentiviral-mediated monocyte-derived DC transduction towards a clinical reality.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Steinman RM . The dendritic cell system and its role in immunogenicity Annu Rev Immunol 1991 9: 271–296

    Article  CAS  PubMed  Google Scholar 

  2. Banchereau J, Steinman RM . Dendritic cells and the control of immunity Nature 1998 392: 245–252

    Article  CAS  PubMed  Google Scholar 

  3. Banchereau J, Schuler-Thurner B, Palucka AK et al. Dendritic cells as vectors for therapy Cell 2001 106: 271–274

    Article  CAS  PubMed  Google Scholar 

  4. Foley R, Tozer R, Wan Y . Genetically modified dendritic cells in cancer therapy: implications for transfusion medicine Transfus Med Rev 2001 15: 292–304

    Article  CAS  PubMed  Google Scholar 

  5. Banchereau J, Briere F, Caux C et al. Immunobiology of dendritic cells Annu Rev Immunol 2000 18: 767–811

    Article  CAS  PubMed  Google Scholar 

  6. Sallusto F, Lanzavecchia A . Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha J Exp Med 1994 179: 1109–1118

    Article  CAS  PubMed  Google Scholar 

  7. Gilboa E . The makings of a tumor rejection antigen Immunity 1999 11: 263–270

    Article  CAS  PubMed  Google Scholar 

  8. Timmerman JM, Levy R . Dendritic cell vaccines for cancer immunotherapy Annu Rev Med 1999 50: 507–529

    Article  CAS  PubMed  Google Scholar 

  9. Sallusto F, Lanzavecchia A . Mobilizing dendritic cells for tolerance, priming, and chronic inflammation J Exp Med 1999 189: 611–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fong L, Engleman EG . Dendritic cells in cancer immunotherapy Annu Rev Immunol 2000 18: 245–273

    Article  CAS  PubMed  Google Scholar 

  11. Kirk CJ, Mule JJ . Gene-modified dendritic cells for use in tumor vaccines Hum Gene Ther 2000 11: 797–806

    Article  CAS  PubMed  Google Scholar 

  12. Reeves ME, Royal RE, Lam JS et al. Retroviral transduction of human dendritic cells with a tumor-associated antigen gene Cancer Res 1996 56: 5672–5677

    CAS  PubMed  Google Scholar 

  13. Szabolcs P, Gallardo HF, Ciocon DH et al. Retrovirally transduced human dendritic cells express a normal phenotype and potent T-cell stimulatory capacity Blood 1997 90: 2160–2167

    CAS  PubMed  Google Scholar 

  14. Chischportich C, Bagnis C, Galindo R et al. Expression of the nlsLacz gene in dendritic cells derived from retrovirally transduced peripheral blood CD34+ cells Haematologica 1999 84: 195–203

    CAS  PubMed  Google Scholar 

  15. Miller DG, Adam MA, Miller AD . Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection Mol Cell Biol 1990 10: 4239–4242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Banchereau J, Palucka AK, Dhodapkar M et al. Immune and clinical responses in patients with metastatic melanoma to CD34(+) progenitor-derived dendritic cell vaccine Cancer Res 2001 61: 6451–6458

    CAS  PubMed  Google Scholar 

  17. Arthur JF, Butterfield LH, Roth MD et al. A comparison of gene transfer methods in human dendritic cells Cancer Gene Ther 1997 4: 17–25

    CAS  PubMed  Google Scholar 

  18. Zhong L, Granelli-Piperno A, Choi Y et al. Recombinant adenovirus is an efficient and non-perturbing genetic vector for human dendritic cells Eur J Immunol 1999 29: 964–972

    Article  CAS  PubMed  Google Scholar 

  19. Young LS, Mautner V . The promise and potential hazards of adenovirus gene therapy Gut 2001 48: 733–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lewis PF, Emerman M . Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus J Virol 1994 68: 510–516

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Naldini L, Blomer U, Gallay P et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector Science 1996 272: 263–267

    Article  CAS  PubMed  Google Scholar 

  22. Chinnasamy N, Chinnasamy D, Toso JF et al. Efficient gene transfer to human peripheral blood monocyte–derived dendritic cells using human immunodeficiency virus type 1–based lentiviral vectors Hum Gene Ther 2000 11: 1901–1909

    Article  CAS  PubMed  Google Scholar 

  23. Gruber A, Kan-Mitchell J, Kuhen KL et al. Dendritic cells transduced by multiply deleted HIV-1 vectors exhibit normal phenotypes and functions and elicit an HIV-specific cytotoxic T-lymphocyte response in vitro Blood 2000 96: 1327–1333

    CAS  PubMed  Google Scholar 

  24. Schroers R, Sinha I, Segall H et al. Transduction of human PBMC-derived dendritic cells and macrophages by an HIV-1–based lentiviral vector system Mol Ther 2000 1: 171–179

    Article  CAS  PubMed  Google Scholar 

  25. Granelli-Piperno A, Zhong L, Haslett P et al. Dendritic cells, infected with vesicular stomatitis virus-pseudotyped HIV-1, present viral antigens to CD4+ and CD8+ T cells from HIV-1–infected individuals J Immunol 2000 165: 6620–6626

    Article  CAS  PubMed  Google Scholar 

  26. Dyall J, Latouche JB, Schnell S et al. Lentivirus-transduced human monocyte-derived dendritic cells efficiently stimulate antigen-specific cytotoxic T lymphocytes Blood 2001 97: 114–121

    Article  CAS  PubMed  Google Scholar 

  27. Zennou V, Petit C, Guetard D et al. HIV-1 genome nuclear import is mediated by a central DNA flap Cell 2000 101: 173–185

    Article  CAS  PubMed  Google Scholar 

  28. Sirven A, Pflumio F, Zennou V et al. The human immunodeficiency virus type-1 central DNA flap is a crucial determinant for lentiviral vector nuclear import and gene transduction of human hematopoietic stem cells Blood 2000 96: 4103–4110

    CAS  PubMed  Google Scholar 

  29. Zufferey R, Dull T, Mandel RJ et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery J Virol 1998 72: 9873–9880

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zufferey R, Nagy D, Mandel RJ et al. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo Nat Biotechnol 1997 15: 871–875

    Article  CAS  PubMed  Google Scholar 

  31. Johnston JC, Gasmi M, Lim LE et al. Minimum requirements for efficient transduction of dividing and nondividing cells by feline immunodeficiency virus vectors J Virol 1999 73: 4991–5000

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Neil S, Martin F, Ikeda Y et al. Postentry restriction to human immunodeficiency virus–based vector transduction in human monocytes J Virol 2001 75: 5448–5456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Follenzi A, Ailles LE, Bakovic S et al. Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences Nat Genet 2000 25: 217–222

    Article  CAS  PubMed  Google Scholar 

  34. Dardalhon V, Herpers B, Noraz N et al. Lentivirus-mediated gene transfer in primary T cells is enhanced by a central DNA flap Gene Ther 2001 8: 190–198

    Article  CAS  PubMed  Google Scholar 

  35. Zennou V, Serguera C, Sarkis C et al. The HIV-1 DNA flap stimulates HIV vector-mediated cell transduction in the brain Nat Biotechnol 2001 19: 446–450

    Article  CAS  PubMed  Google Scholar 

  36. Morgan JR, LeDoux JM, Snow RG et al. Retrovirus infection: effect of time and target cell number J Virol 1995 69: 6994–7000

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhou LJ, Tedder TF . Human blood dendritic cells selectively express CD83, a member of the immunoglobulin superfamily J Immunol 1995 154: 3821–3835

    CAS  PubMed  Google Scholar 

  38. Cella M, Salio M, Sakakibara Y et al. Maturation, activation, and protection of dendritic cells induced by double-stranded RNA J Exp Med 1999 189: 821–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Verdijk RM, Mutis T, Esendam B et al. Polyriboinosinic polyribocytidylic acid (poly(I:C)) induces stable maturation of functionally active human dendritic cells J Immunol 1999 163: 57–61

    CAS  PubMed  Google Scholar 

  40. Gately MK, Wolitzky AG, Quinn PM et al. Regulation of human cytolytic lymphocyte responses by interleukin-12 Cell Immunol 1992 143: 127–142

    Article  CAS  PubMed  Google Scholar 

  41. Manetti R, Annunziato F, Tomasevic L et al. Polyinosinic acid: polycytidylic acid promotes T helper type 1–specific immune responses by stimulating macrophage production of interferon-alpha and interleukin-12 Eur J Immunol 1995 25: 2656–2660

    Article  CAS  PubMed  Google Scholar 

  42. Trono D, Baltimore D . A human cell factor is essential for HIV-1 Rev action EMBO J 1990 9: 4155–4160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stripecke R, Carmen VM, Skelton D et al. Immune response to green fluorescent protein: implications for gene therapy Gene Ther 1999 6: 1305–1312

    Article  CAS  PubMed  Google Scholar 

  44. Rouard H, Leon A, Klonjkowski B et al. Adenoviral transduction of human “clinical grade” immature dendritic cells enhances costimulatory molecule expression and T-cell stimulatory capacity J Immunol Methods 2000 241: 69–81

    Article  CAS  PubMed  Google Scholar 

  45. Bakri Y, Schiffer C, Zennou V et al. The maturation of dendritic cells results in postintegration inhibition of HIV-1 replication J Immunol 2001 166: 3737–3780

    Article  Google Scholar 

  46. Firat H, Zennou V, Garcia-Pons F et al. Use of a lentiviral flap vector for induction of CTL immunity against melanoma. Perspectives for immunotherapy J Gene Med 2002 4: 38–45

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fonds National de la Recherche Scientifique, Belgium; the Fonds Medic; the Fondation Bekales; the Gene Vector Production Network, Institut Paoli-Calmettes, France; and the Association Française Contre les Myopathies (AFM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Van den Broeke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rouas, R., Uch, R., Cleuter, Y. et al. Lentiviral-mediated gene delivery in human monocyte-derived dendritic cells: Optimized design and procedures for highly efficient transduction compatible with clinical constraints. Cancer Gene Ther 9, 715–724 (2002). https://doi.org/10.1038/sj.cgt.7700500

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700500

Keywords

This article is cited by

Search

Quick links