Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Efficient genetic modification of murine dendritic cells by electroporation with mRNA

Abstract

Recently, human dendritic cells (DCs) pulsed with mRNA encoding a broad range of tumor antigens have proven to be potent activators of a primary anti–tumor-specific T-cell response in vitro. The aim of this study was to improve the mRNA pulsing of murine DC. Compared to a standard lipofection protocol and passive pulsing, electroporation was, in our hands, the most efficient method. The optimal conditions to electroporate murine bone marrow–derived DCs with mRNA were determined using enhanced green fluorescent protein and a truncated form of the nerve growth factor receptor. We could obtain high transfection efficiencies around 70–80% with a mean fluorescence intensity of 100–200. A maximal expression level was reached 3 hours after electroporation. A clear dose–response effect was seen depending on the amount of mRNA used. Importantly, the electroporation process did not affect the viability nor the allostimulatory capacity or phenotype of the DC. To study the capacity of mRNA-electroporated DCs to present antigen in the context of MHC classes I and II, we made use of chimeric constructs of ovalbumin. The dose-dependent response effect and the duration of presentation were also determined. Together, these results demonstrate that mRNA electroporation is a useful method to generate genetically modified murine DC, which can be used for preclinical studies testing immunotherapeutic approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Steinman RM . The dendritic cell system and its role in immunogenicity Annu Rev Immunol 1991 9: 271–296

    Article  CAS  PubMed  Google Scholar 

  2. Banchereau J, Steinman RM . Dendritic cells and the control of immunity Nature 1998 392: 245–252

    Article  CAS  PubMed  Google Scholar 

  3. Thery C, Amigorena S . The cell biology of antigen presentation in dendritic cells Curr Opin Immunol 2001 13: 45–51

    Article  CAS  PubMed  Google Scholar 

  4. Fong L, Engleman EG . Dendritic cells in cancer immunotherapy Annu Rev Immunol 2000 18: 245–273

    CAS  PubMed  Google Scholar 

  5. Dallal RM, Lotze MT . The dendritic cell and human cancer vaccines Curr Opin Immunol 2000 12: 583–588

    Article  CAS  PubMed  Google Scholar 

  6. Grabbe S, Beissert S, Schwarz T, Granstein RD . Dendritic cells as initiators of tumor immune responses: a possible strategy for tumor immunotherapy? Immunol Today 1995 16: 117–121

    Article  CAS  PubMed  Google Scholar 

  7. Palucka K, Banchereau J . Dendritic cells: a link between innate and adaptive immunity J Clin Immunol 1999 19: 12–25

    Article  CAS  PubMed  Google Scholar 

  8. Celluzzi CM, Mayordomo JI, Storkus WJ, Lotze MT, Falo LD Jr . Peptide-pulsed dendritic cells induce antigen-specific CTL-mediated protective tumor immunity J Exp Med 1996 183: 283–287

    Article  CAS  PubMed  Google Scholar 

  9. Porgador A, Snyder D, Gilboa E . Induction of antitumor immunity using bone marrow–generated dendritic cells J Immunol 1996 156: 2918–2926

    CAS  PubMed  Google Scholar 

  10. Zitvogel L, Mayordomo JI, Tjandrawan T et al. Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation, and T helper cell 1–associated cytokines J Exp Med 1996 183: 87–97

    Article  CAS  PubMed  Google Scholar 

  11. Nair SK, Boczkowski D, Snyder D, Gilboa E . Antigen-presenting cells pulsed with unfractionated tumor-derived peptides are potent tumor vaccines Eur J Immunol 1997 27: 589–597

    Article  CAS  PubMed  Google Scholar 

  12. Fields RC, Shimizu K, Mule JJ . Murine dendritic cells pulsed with whole tumor lysates mediate potent antitumor immune responses in vitro and in vivo Proc Natl Acad Sci USA 1998 95: 9482–9487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lambert LA, Gibson GR, Maloney M, Barth RJ Jr . Equipotent generation of protective antitumor immunity by various methods of dendritic cell loading with whole cell tumor antigens J Immunother 2001 24: 232–236

    Article  CAS  PubMed  Google Scholar 

  14. Albert ML, Sauter B, Bhardwaj N . Dendritic cells acquire antigen from apoptotic cells and induce class I–restricted CTLs Nature 1998 392: 86–89

    Article  CAS  PubMed  Google Scholar 

  15. Paglia P, Chiodoni C, Rodolfo M, Colombo MP . Murine dendritic cells loaded in vitro with soluble protein prime cytotoxic T lymphocytes against tumor antigen in vivo J Exp Med 1996 183: 317–322

    Article  CAS  PubMed  Google Scholar 

  16. Inaba K, Metlay JP, Crowley MT, Steinman RM . Dendritic cells pulsed with protein antigens in vitro can prime antigen-specific, MHC-restricted T cells in situ J Exp Med 1990 172: 631–640

    Article  CAS  PubMed  Google Scholar 

  17. Hsu FJ, Benike C, Fagnoni F et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells Nat Med 1996 2: 52–58

    Article  CAS  PubMed  Google Scholar 

  18. Schnell S, Young JW, Houghton AN, Sadelain M . Retrovirally transduced mouse dendritic cells require CD4+ T cell help to elicit antitumor immunity: implications for the clinical use of dendritic cells J Immunol 2000 164: 1243–1250

    Article  CAS  PubMed  Google Scholar 

  19. De Veerman M, Heirman C, Van Meirvenne S et al. Retrovirally transduced bone marrow–derived dendritic cells require CD4+ T cell help to elicit protective and therapeutic antitumor immunity J Immunol 1999 162: 144–151

    CAS  PubMed  Google Scholar 

  20. Specht JM, Wang G, Do MT et al. Dendritic cells retrovirally transduced with a model antigen gene are therapeutically effective against established pulmonary metastases J Exp Med 1997 186: 1213–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Song W, Tong Y, Carpenter H, Kong HL, Crystal RG . Persistent, antigen-specific, therapeutic antitumor immunity by dendritic cells genetically modified with an adenoviral vector to express a model tumor antigen Gene Ther 2000 7: 2080–2086

    Article  CAS  PubMed  Google Scholar 

  22. Kaplan JM, Yu Q, Piraino ST et al. Induction of antitumor immunity with dendritic cells transduced with adenovirus vector–encoding endogenous tumor–associated antigens J Immunol 1999 163: 699–707

    CAS  PubMed  Google Scholar 

  23. Brossart P, Goldrath AW, Butz EA, Martin S, Bevan MJ . Virus-mediated delivery of antigenic epitopes into dendritic cells as a means to induce CTL J Immunol 1997 158: 3270–3276

    CAS  PubMed  Google Scholar 

  24. Boon T, van der Bruggen P . Human tumor antigens recognized by T lymphocytes J Exp Med 1996 183: 725–729

    Article  CAS  PubMed  Google Scholar 

  25. Boczkowski D, Nair SK, Nam JH, Lyerly HK, Gilboa E . Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells Cancer Res 2000 60: 1028–1034

    CAS  PubMed  Google Scholar 

  26. Heiser A, Dahm P, Yancey DR et al. Human dendritic cells transfected with RNA encoding prostate-specific antigen stimulate prostate-specific CTL responses in vitro J Immunol 2000 164: 5508–5514

    Article  CAS  PubMed  Google Scholar 

  27. Heiser A, Maurice MA, Yancey DR et al. Human dendritic cells transfected with renal tumor RNA stimulate polyclonal T-cell responses against antigens expressed by primary and metastatic tumors Cancer Res 2001 61: 3388–3393

    CAS  PubMed  Google Scholar 

  28. Heiser A, Maurice MA, Yancey DR et al. Induction of polyclonal prostate cancer–specific CTL using dendritic cells transfected with amplified tumor RNA J Immunol 2001 166: 2953–2960

    Article  CAS  PubMed  Google Scholar 

  29. Mitchell DA, Nair SK . RNA-transfected dendritic cells in cancer immunotherapy J Clin Invest 2000 106: 1065–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nair SK, Boczkowski D, Morse M et al. Induction of primary carcinoembryonic antigen (CEA)–specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA Nat Biotechnol 1998 16: 364–369

    Article  CAS  PubMed  Google Scholar 

  31. Nair SK, Hull S, Coleman D et al. Induction of carcinoembryonic antigen (CEA)–specific cytotoxic T-lymphocyte responses in vitro using autologous dendritic cells loaded with CEA peptide or CEA RNA in patients with metastatic malignancies expressing CEA Int J Cancer 1999 82: 121–124

    Article  CAS  PubMed  Google Scholar 

  32. Thornburg C, Boczkowski D, Gilboa E, Nair SK . Induction of cytotoxic T lymphocytes with dendritic cells transfected with human papillomavirus E6 and E7 RNA: implications for cervical cancer immunotherapy J Immunother 2000 23: 412–418

    Article  CAS  PubMed  Google Scholar 

  33. Toes RE, Ossendorp F, Offringa R, Melief CJ . CD4 T cells and their role in antitumor immune responses J Exp Med 1999 189: 753–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hung K, Hayashi R, Lafond-Walker A et al. The central role of CD4(+) T cells in the antitumor immune response J Exp Med 1998 188: 2357–2368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kalams SA, Walker BD . The critical need for CD4 help in maintaining effective cytotoxic T lymphocyte responses J Exp Med 1998 188: 2199–2204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bennett SR, Carbone FR, Karamalis F et al. Help for cytotoxic-T-cell responses is mediated by CD40 signalling Nature 1998 393: 478–480

    Article  CAS  PubMed  Google Scholar 

  37. Ridge JP, Di Rosa F, Matzinger P . A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell Nature 1998 393: 474–478

    Article  CAS  PubMed  Google Scholar 

  38. Schoenberger SP, Toes E, van der Voort EI, Offringa R, Melief CJ . T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions Nature 1998 393: 480–483

    Article  CAS  PubMed  Google Scholar 

  39. Akiyama Y, Watanabe M, Maruyama K et al. Enhancement of antitumor immunity against B16 melanoma tumor using genetically modified dendritic cells to produce cytokines Gene Ther 2000 7: 2113–2121

    Article  CAS  PubMed  Google Scholar 

  40. Kikuchi T, Moore MA, Crystal RG . Dendritic cells modified to express CD40 ligand elicit therapeutic immunity against preexisting murine tumors Blood 2000 96: 91–99

    CAS  PubMed  Google Scholar 

  41. Zhang W, He L, Yuan Z et al. Enhanced therapeutic efficacy of tumor RNA-pulsed dendritic cells after genetic modification with lymphotactin Hum Gene Ther 1999 10: 1151–1161

    Article  CAS  PubMed  Google Scholar 

  42. Tuting T, Wilson CC, Martin DM et al. Autologous human monocyte–derived dendritic cells genetically modified to express melanoma antigens elicit primary cytotoxic T cell responses in vitro: enhancement by cotransfection of genes encoding the Th1-biasing cytokines IL-12 and IFN-alpha J Immunol 1998 160: 1139–1147

    CAS  PubMed  Google Scholar 

  43. Van Tendeloo VF, Ponsaerts P, Lardon F et al. Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells Blood 2001 98: 49–56

    Article  CAS  PubMed  Google Scholar 

  44. Nair SK, Heiser A, Boczkowski D et al. Induction of cytotoxic T cell responses and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells Nat Med 2000 6: 1011–1017

    Article  CAS  PubMed  Google Scholar 

  45. Boczkowski D, Nair SK, Snyder D, Gilboa E . Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo J Exp Med 1996 184: 465–472

    Article  CAS  PubMed  Google Scholar 

  46. Cormack BP, Valdivia RH, Falkow S . FACS-optimized mutants of the green fluorescent protein (GFP) Gene 1996 173: 33–38

    Article  CAS  PubMed  Google Scholar 

  47. Mavilio F, Ferrari G, Rossine S et al. Peripheral blood lymphocytes as target cells of retroviral vector–mediated gene transfer Blood 1994 83: 1988–1997

    CAS  PubMed  Google Scholar 

  48. Varshavsky A . The ubiquitin system Trends Biochem Sci 1997 22: 383–387

    Article  CAS  PubMed  Google Scholar 

  49. Varshavsky A . The N-end rule: functions, mysteries, uses Proc Natl Acad Sci USA 1996 93: 12142–12149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gonda DK, Bachmair A, Wunning I et al. Universality and structure of the N-end rule J Biol Chem 1989 264: 16700–16712

    CAS  PubMed  Google Scholar 

  51. Koch N, van Driel IR, Gleeson PA . Hijacking a chaperone: manipulation of the MHC class II presentation pathway Immunol Today 2000 21: 546–550

    Article  CAS  PubMed  Google Scholar 

  52. Odorizzi CG, Trowbridge IS, Xue L et al. Sorting signals in the MHC class II invariant chain cytoplasmic tail and transmembrane region determine trafficking to an endocytic processing compartment J Cell Biol 1994 126: 317–330

    Article  CAS  PubMed  Google Scholar 

  53. Pieters J, Bakke O, Dobberstein B . The MHC class II–associated invariant chain contains two endosomal targeting signals within its cytoplasmic tail J Cell Sci 1993 106: 831–846

    CAS  PubMed  Google Scholar 

  54. Sanderson S, Frauwirth K, Shastri N . Expression of endogenous peptide–major histocompatibility complex class II complexes derived from invariant chain–antigen fusion proteins Proc Natl Acad Sci USA 1995 92: 7217–7221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sponaas A, Carstens C, Koch N . C-terminal extension of the MHC class II–associated invariant chain by an antigenic sequence triggers activation of naive T cells Gene Ther 1999 6: 1826–1834

    Article  CAS  PubMed  Google Scholar 

  56. Lutz MB, Kukutsch N, Ogilvie AL et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow J Immunol Methods 1999 223: 77–92

    Article  CAS  PubMed  Google Scholar 

  57. Razi-Wolf Z, Galvin F, Gray G, Reiser H . Evidence for an additional ligand, distinct from B7, for the CTLA-4 receptor Proc Natl Acad Sci USA 1993 90: 11182–11186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rolink A, Melchers F, Andersson J . The SCID but not the RAG-2 gene product is required for S mu–S epsilon heavy chain class switching Immunity 1996 5: 319–330

    Article  CAS  PubMed  Google Scholar 

  59. Porgador A, Yewdell JW, Deng Y, Bennink JR, Germain RN . Localization, quantitation, and in situ detection of specific peptide–MHC class I complexes using a monoclonal antibody Immunity 1997 6: 715–726

    Article  CAS  PubMed  Google Scholar 

  60. Gilboa E . The makings of a tumor rejection antigen Immunity 1999 11: 263–270

    Article  CAS  PubMed  Google Scholar 

  61. Christ M, Lusky M, Stoeckel F et al. Gene therapy with recombinant adenovirus vectors: evaluation of the host immune response Immunol Lett 1997 57: 19–25

    Article  CAS  PubMed  Google Scholar 

  62. Van den Eynde BJ, van der Bruggen P . T cell defined tumor antigens Curr Opin Immunol 1997 9: 684–693

    Article  CAS  PubMed  Google Scholar 

  63. Yang Y, Li Q, Ertl HC, Wilson JM . Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses J Virol 1995 69: 2004–2015

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Jenne L, Hauser C, Arrighi JF, Saurat JH, Hugin AW . Poxvirus as a vector to transduce human dendritic cells for immunotherapy: abortive infection but reduced APC function Gene Ther 2000 7: 1575–1583

    Article  CAS  PubMed  Google Scholar 

  65. Jonuleit H, Tuting T, Steitz J et al. Efficient transduction of mature CD83+ dendritic cells using recombinant adenovirus suppressed T cell stimulatory capacity Gene Ther 2000 7: 249–254

    Article  CAS  PubMed  Google Scholar 

  66. Luo D, Saltzman WM . Synthetic DNA delivery systems Nat Biotechnol 2000 18: 33–37

    Article  CAS  PubMed  Google Scholar 

  67. Strobel I, Berchtold S, Gotze A et al. Human dendritic cells transfected with either RNA or DNA encoding influenza matrix protein M1 differ in their ability to stimulate cytotoxic T lymphocytes Gene Ther 2000 7: 2028–2035

    Article  CAS  PubMed  Google Scholar 

  68. Condon C, Watkins SC, Celluzzi CM, Thompson K, Falo LD Jr . DNA-based immunization by in vivo transfection of dendritic cells Nat Med 1996 2: 1122–1128

    Article  CAS  PubMed  Google Scholar 

  69. Alexander-Miller MA, Derby MA, Sarin A, Henkart PA, Berzofsky JA . Supraoptimal peptide–major histocompatibility complex causes a decrease in bc1-2 levels and allows tumor necrosis factor alpha receptor II–mediated apoptosis of cytotoxic T lymphocytes J Exp Med 1998 188: 1391–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wherry EJ, Puorro KA, Porgador A, Eisenlohr LC . The induction of virus-specific CTL as a function of increasing epitope expression: responses rise steadily until excessively high levels of epitope are attained J Immunol 1999 163: 3735–3745

    CAS  PubMed  Google Scholar 

  71. Bullock TN, Colella TA, Engelhard VH . The density of peptides displayed by dendritic cells affects immune responses to human tyrosinase and gp100 in HLA-A2 transgenic mice J Immunol 2000 164: 2354–2361

    Article  CAS  PubMed  Google Scholar 

  72. Moore MW, Carbone FR, Bevan MJ . Introduction of soluble protein into the class I pathway of antigen processing and presentation Cell 1988 54: 777–785

    Article  CAS  PubMed  Google Scholar 

  73. Kukutsch NA, Rossner S, Austyn JM, Schuler G, Lutz MB . Formation and kinetics of MHC class I–ovalbumin peptide complexes on immature and mature murine dendritic cells J Invest Dermatol 2000 115: 449–453

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Muriel Moser for helpful discussion, Hilde Revets for kindly providing the 25-D1.16 hybridoma cells, Elsy Vaeremans, Peggy Verbuyst, and Gert De Block for technical assistance, and Yasmina Essam for secretarial assistance. This work was supported by grants to KT from the Fund for Scientific Research-Flanders (FWO-Vlaanderen), the Institute for Science and Technology (IWT), the Ministry of Science (IUAP/PAI IV), De Algemene Spaar-en Lijfrentekas (ASLK/CGER), and De Belgische Federatie voor Kankerbestrijding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kris Thielemans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Meirvenne, S., Straetman, L., Heirman, C. et al. Efficient genetic modification of murine dendritic cells by electroporation with mRNA. Cancer Gene Ther 9, 787–797 (2002). https://doi.org/10.1038/sj.cgt.7700499

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700499

Keywords

This article is cited by

Search

Quick links