Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Evaluation of E1B gene-attenuated replicating adenoviruses for cancer gene therapy

Abstract

Gene-attenuated replication-competent adenoviruses are emerging as a promising new modality for the treatment of cancer. For the aim of improving adenoviral vectors for cancer gene therapy, we have constructed genetically attenuated adenoviral vectors with different combinations of E1B genes and investigated the possibility of enhanced oncolytic and replication effects of these engineered replication-competent adenoviruses. We show here that the cytolytic potency of each gene-attenuated replicating adenovirus differed significantly depending on the presence or deletion of E1B 55 kDa and E1B 19 kDa function. More specifically, among the constructed vectors (Ad-ΔE1B19, Ad-ΔE1B55, Ad-ΔE1B19/55, and Ad-wt), E1B 19 kDa–inactivated adenovirus (Ad-ΔE1B19) was the most potent against all tumor cells tested, inducing the largest-sized plaques and marked CPE. Further, cells infected with either Ad-ΔE1B19 or E1B19/55 kDa–deleted adenovirus (Ad-ΔE1B19/55) showed complete cell lysis with disintegrated cellular structure, whereas cells infected with Ad-wt maintained intact cellular and nuclear membrane with properly structured organelles. TUNEL and DNA fragmentation assay also revealed that the Ad-ΔE1B19 or Ad-ΔE1B19/55 adenovirus-infected cells showed more profound induction of apoptosis in comparison to wild-type adenovirus-infected cells. The presence of E1B 55 kDa gene was required for efficient viral replication and deletion of E1B 19 kDa function in replicating adenovirus-induced apoptosis, leading to increased cytopathic effects. Moreover, Ad-ΔE1B19 adenovirus showed a better antitumor effect than other E1B-attenuated adenoviruses. Taken together, the replicating adenoviruses deleted in E1B 19 kDa function may serve as an improved vector for anticancer gene therapy in combination with apoptosis-inducing modalities such as chemotherapeutic agents and radiation therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Kirn D . Replication selective oncolytic adenoviruses: virotherapy aimed at genetic targets in cancer Oncogene 2000 19: 6660–6669

    Article  CAS  PubMed  Google Scholar 

  2. Kirn D . Clinical research results with dl1520 (Onyx-015), a replication-selective adenovirus for the treatment of cancer: what have we learned? Gene Ther 2001 8: 89–98

    Article  CAS  PubMed  Google Scholar 

  3. Kirn D, Martuza RL, Zwiebel J . Replication-selective virotherapy for cancer: biological principles, risk management and future directions Nat Med 2001 7: 781–787

    Article  CAS  PubMed  Google Scholar 

  4. Mulvihill S, Warren R, Venook A et al. Safety and feasibility of injection with an E1B-55 kDa gene–deleted, replication-selective adenovirus (ONYX-015) into primary carcinomas of the pancreas: a phase I trial Gene Ther 2001 8: 308–315

    Article  CAS  PubMed  Google Scholar 

  5. Ganly I, Eckhardt SG, Rodriguez GI et al. A phase I study of Onyx-015, an E1B attenuated adenovirus, administered intratumorally to patients with recurrent head and neck cancer Clin Cancer Res 2000 6: 798–806

    CAS  PubMed  Google Scholar 

  6. Nemunaitis J, Ganly I, Khuri F et al. Selective replication and oncolysis in p53 mutant tumors with ONYX-015, an E1B-55 kD gene–deleted adenovirus, in patients with advanced head and neck cancer: a phase II trial Cancer Res 2000 60: 6359–6366

    CAS  PubMed  Google Scholar 

  7. Khuri FR, Nemunaitis J, Ganly I et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer Nat Med 2000 6: 879–885

    Article  CAS  PubMed  Google Scholar 

  8. Lamont JP, Nemunaitis J, Kuhn JA et al. A prospective phase II trial of ONYX-015 adenovirus and chemotherapy in recurrent squamous cell carcinoma of the head and neck (the Baylor experience) Ann Surg Oncol 2000 7: 588–592

    Article  CAS  PubMed  Google Scholar 

  9. Boyd JM, Malstrom S, Subramanian T et al. Adenovirus E1B 19 kDa and Bcl-2 proteins interact with a common set of cellular proteins Cell 1994 79: 1121

    Article  CAS  PubMed  Google Scholar 

  10. Chiou SK, Tseng CC, Rao L, White E . Functional complementation of the adenovirus E1B 19-kilodalton protein with Bcl-2 in the inhibition of apoptosis in infected cells J Virol 1994 68: 6553–6566

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Boulakia CA, Chen G, Ng FW et al. Bcl-2 and adenovirus E1B 19 kDA protein prevent E1A-induced processing of CPP32 and cleavage of poly (ADP-ribose) polymerase Oncogene 1996 12: 529–535

    CAS  PubMed  Google Scholar 

  12. Han J, Modha D, White E . Interaction of E1B 19 K with Bax is required to block Bax-induced loss of mitochondrial membrane potential and apoptosis Oncogene 1998 17: 2993–3005

    Article  CAS  PubMed  Google Scholar 

  13. Rao L, Debbas M, Sabbatini P et al. The adenovirus E1A proteins induce apoptosis, which is inhibited by the E1B 19-kDa and Bcl-2 proteins Proc Natl Acad Sci USA 1992 89: 7742–7746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Debbas M, White E . Wild-type p53 mediates apoptosis by E1A, which is inhibited by E1B Genes Dev 1993 7: 546–554

    Article  CAS  PubMed  Google Scholar 

  15. Shen Y, Shenk T . Relief of p53-mediated transcriptional repression by the adenovirus E1B 19-kDa protein or the cellular Bcl-2 protein Proc Natl Acad Sci USA 1994 91: 8940–8944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang DC, Cory S, Strasser A . Bcl-2, Bcl-XL and adenovirus protein E1B19 kD are functionally equivalent in their ability to inhibit cell death Oncogene 1997 14: 405–414

    Article  CAS  PubMed  Google Scholar 

  17. Xiang J, Gomez-Navarro J, Arafat W et al. Pro-apoptotic treatment with an adenovirus encoding Bax enhances the effect of chemotherapy in ovarian cancer J Gene Med 2000 2: 97–106

    Article  CAS  PubMed  Google Scholar 

  18. Tsuruta Y, Mandai M, Konishi I et al. Combination effect of adenovirus-mediated pro-apoptotic bax gene transfer with cisplatin or paclitaxel treatment in ovarian cancer cell lines Eur J Cancer 2001 37: 531–541

    Article  CAS  PubMed  Google Scholar 

  19. Babiss LE, Ginsberg HS, Darnell JE . Adenovirus E1B proteins are required for accumulation of late viral mRNA and for effects on cellular mRNA translation and transport Mol Cell Biol 1985 5: 2552–2558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bridge E, Ketner G . Interaction of adenoviral E4 and E1b products in late gene expression Virology 1990 174: 345–353

    Article  CAS  PubMed  Google Scholar 

  21. Dobbelstein M, Roth J, Kimberly WT et al. Nuclear export of the E1B 55-kDa and E4 34-kDa adenoviral oncoproteins mediated by a rev-like signal sequence EMBO J 1997 16: 4276–4284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee H, Kim J, Lee B et al. Oncolytic potential of E1B 55 kDa–deleted YKL-1 recombinant adenovirus: correlation with p53 functional status Int J Cancer 2000 88: 454–463

    Article  CAS  PubMed  Google Scholar 

  23. Sauthoff H, Heitner S, Rom WN, Hay JG . Deletion of the adenoviral E1b-19 kD gene enhances tumor cell killing of a replicating adenoviral vector Hum Gene Ther 2000 11: 379–388

    Article  CAS  PubMed  Google Scholar 

  24. Lam KM . Apoptosis in chicken embryo fibroblasts caused by Newcastle disease virus Vet Microbiol 1995 47: 357–363

    Article  CAS  PubMed  Google Scholar 

  25. Secchiero P, Flamand L, Gibellini D et al. Human herpesvirus 7 induces CD4(+) T-cell death by two distinct mechanisms: necrotic lysis in productively infected cells and apoptosis in uninfected or nonproductively infected cells Blood 1997 90: 4502–4512

    CAS  PubMed  Google Scholar 

  26. Hong JR, Lin TL, Hsu YL, Wu JL . Apoptosis precedes necrosis of fish cell line with infectious pancreatic necrosis virus infection Virology 1998 250: 76–84

    Article  CAS  PubMed  Google Scholar 

  27. Compton MM . A biochemical hallmark of apoptosis: internucleosomal degradation of the genome Cancer Metastasis Rev 1992 11: 105–119

    Article  CAS  PubMed  Google Scholar 

  28. Dobner T, Horikoshi N, Rubenwolf S, Shenk T . Blockage by adenovirus E4orf6 of transcriptional activation by the p53 tumor suppressor Science 1996 272: 1470–1473

    Article  CAS  PubMed  Google Scholar 

  29. Nevels M, Rubenwolf S, Spruss T, Wolf H, Dobner T . The adenovirus E4orf6 protein can promote E1A/E1B–induced focus formation by interfering with p53 tumor suppressor function Proc Natl Acad Sci USA 1997 94: 1206–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Grand RJ, Grant ML, Gallimore PH . Enhanced expression of p53 in human cells infected with mutant adenoviruses Virology 1994 203: 229–240

    Article  CAS  PubMed  Google Scholar 

  31. Querido E, Marcellus RC, Lai A et al. Regulation of p53 levels by the E1B 55-kilodalton protein and E4orf6 in adenovirus-infected cells J Virol 1997 71: 3788–3798

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Steegenga WT, Riteco N, Jochemsen AG, Fallaux FJ, Bos JL . The large E1B protein together with the E4orf6 protein target p53 for active degradation in adenovirus infected cells Oncogene 1998 16: 349–357

    Article  CAS  PubMed  Google Scholar 

  33. Halbert DN, Cutt JR, Shenk T . Adenovirus early region 4 encodes functions required for efficient DNA replication, late gene expression, and host cell shutoff J Virol 1985 56: 250–257

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Pilder S, Moore M, Logan J, Shenk T . The adenovirus E1B-55K transforming polypeptide modulates transport or cytoplasmic stabilization of viral and host cell mRNAs Mol Cell Biol 1986 6: 470–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Leppard KN, Shenk T . The adenovirus E1B 55 kd protein influences mRNA transport via an intranuclear effect on RNA metabolism Embo J 1989 8: 2329–2336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pilder S, Logan J, Shenk T . Deletion of the gene encoding the adenovirus 5 early region 1b 21,000-molecular-weight polypeptide leads to degradation of viral and host cell DNA J Virol 1984 52: 664–671

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Subramanian T, Kuppuswamy M, Gysbers J, Mak S, Chinnadurai G . 19-kDa tumor antigen coded by early region E1b of adenovirus 2 is required for efficient synthesis and for protection of viral DNA J Biol Chem 1984 259: 11777–11783

    CAS  PubMed  Google Scholar 

  38. Subramanian T, Kuppuswamy M, Mak S, Chinnadurai G . Adenovirus cyt+ locus, which controls cell transformation and tumorigenicity, is an allele of lp+ locus, which codes for a 19-kilodalton tumor antigen J Virol 1984 52: 336–343

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Takemori N, Cladaras C, Bhat B, Conley AJ, Wold WS . cyt gene of adenoviruses 2 and 5 is an oncogene for transforming function in early region E1B and encodes the E1B 19,000-molecular-weight polypeptide J Virol 1984 52: 793–805

    CAS  PubMed  PubMed Central  Google Scholar 

  40. White E, Cipriani R, Sabbatini P, Denton A . Adenovirus E1B 19-kilodalton protein overcomes the cytotoxicity of E1A proteins J Virol 1991 65: 2968–2978

    CAS  PubMed  PubMed Central  Google Scholar 

  41. White E, Faha B, Stillman B . Regulation of adenovirus gene expression in human WI38 cells by an E1B-encoded tumor antigen Mol Cell Biol 1986 6: 3763–3773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Laster SM, Wood JG, Gooding LR . Tumor necrosis factor can induce both apoptotic and necrotic forms of cell lysis J Immunol 1988 141: 2629–2634

    CAS  PubMed  Google Scholar 

  43. Gooding LR, Aquino L, Duerksen-Hughes PJ et al. The E1B 19,000-molecular-weight protein of group C adenoviruses prevents tumor necrosis factor cytolysis of human cells but not of mouse cells J Virol 1991 65: 3083–3094

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kurihara T, Brough DE, Kovesdi I, Kufe DW . Selectivity of a replication-competent adenovirus for human breast carcinoma cells expressing the MUC1 antigen J Clin Invest 2000 106: 763–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Doronin K, Toth K, Kuppuswamy K et al. Tumor-specific, replication-competent adenovirus vectors overexpressing the adenovirus death protein J Virol 2000 74: 6147–6155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Subramanian TG, Tarodi B, Govindarajan R et al. Mutational analysis of the transforming and apoptosis suppression activities of the adenovirus E1B 175R protein Gene 1993 124: 173–181

    Article  CAS  PubMed  Google Scholar 

  47. Chartier C, Degryse E, Gantzer M et al. Efficient generation of recombinant adenovirus vectors by homologous recombination in Escherichia coli J Virol 1996 70: 4805–4810

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Tollefson AE, Scaria A, Hermiston TW et al. The adenovirus death protein (E3-11.6 K) is required at very late stages of infection for efficient cell lysis and release of adenovirus from infected cells J Virol 1996 70: 2296–2306

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank all of our colleagues at Yosei Cancer Center, Seoul, Korea who have contributed to these studies. We thank J-H Son for his valueable contribution. This work was supported by grants from Ministry of Health & Welfare, Republic of Korea (HMP-01-PJI-PG3-20800-0115, C-O Yun) and Ministry of Commerce Industry and Energy, Republic of Korea (N03-990-5411-01-1-3, J-H Kim). Jaesung Kim is a graduate student sponsored by Brain Korea 21 Project for Medical Science, Yonsei University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chae-Ok Yun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J., Cho, J., Kim, JH. et al. Evaluation of E1B gene-attenuated replicating adenoviruses for cancer gene therapy. Cancer Gene Ther 9, 725–736 (2002). https://doi.org/10.1038/sj.cgt.7700494

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700494

Keywords

This article is cited by

Search

Quick links