Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Preliminary Report
  • Published:

In vivo growth inhibitory effect of iterative wild-type p53 gene transfer in human head and neck carcinoma xenografts using glucosylated polyethylenimine nonviral vector

Abstract

Polyethylenimine (PEI) derivatives are polycationic nonviral vectors for gene transfer. Previous results achieved in vitro in head and neck cancer cells demonstrated that glucosylated PEI yields higher gene transfer efficiency and longer transgene expression than unsubstituted PEI. Using glucosylated PEI, p53 gene transfer was successfully achieved with subsequent recovery of P53 protein expression and induction of spontaneous apoptosis. The present study reports in vivo data achieved in human head and neck squamous cell carcinoma xenografted mice. Using biotinylated PEI and histochemistry analysis, the vector was found to diffuse in the proliferating cells of the tumor tissue, sparing necrotic areas. No diffusion was observed inside keratinized area composed of nonproliferating, mature differentiated cells. Using green fluorescent protein (GFP) transfection and fluorescence microscopy, the transgene expression was mainly observed at the periphery of the tumor containing proliferating cells. GFP expression appeared lower inside the tumor depth. Quantitative transgene expression kinetics was then determined using luciferase as reporter gene. The maximal transgene expression was achieved 48 hours after intratumoral injection of glucosylated PEI/DNA complexes. The highest gene transfer efficacy was achieved 48 hours after two intratumoral injection. After transfection of wild-type p53, tumor growth inhibition was observed in tumor-bearing mice receiving intratumoral injection of glucosylated PEI/DNA complexes repeated twice weekly. Tumor growth inhibition was maintained under continuous treatment using the same schedule. In all experiments, no noticeable toxicity was observed. The present results demonstrate the feasibility and the tumor growth inhibition potency of nonviral gene transfer using glucosylated polyethylenimine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Greenblatt MS, Bennett WP, Hollstein M, Harris CC . Mutation in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis Cancer Res 1994 54: 4855–4878

    CAS  PubMed  Google Scholar 

  2. Brennan JA, Sidransky D . Molecular staging of head and neck squamous carcinoma Cancer Metastasis Rev 1996 15: 3–10

    Article  CAS  PubMed  Google Scholar 

  3. Dolivet G, Colosetti P, Merlin JL et al. Elements of epidemiology and initiation of carcinogenesis in carcinomas of the upper aerodigestive tract. Future therapeutic consequence? Rev Laryngol Otol Rhinol 1998 119: 5–12

    Google Scholar 

  4. Ganly I, Soutar DS, Kaye SB . Current role of gene therapy in head and neck cancer Eur J Surg Oncol 2000 26: 338–343

    Article  CAS  PubMed  Google Scholar 

  5. Liu TL, Zhang WW, Taylor DL, Roth JA, Goepfert H, Clayman GL . Growth suppression of human head and neck cancer cells by the introduction of a wild type p53 gene with a recombinant adenovirus Cancer Res 1994 54: 3662–3667

    CAS  PubMed  Google Scholar 

  6. Liu TL, El-Naggar AK, McDonnel TJ et al. Apoptosis induction mediated by wild-type p53 adenoviral gene transfer in squamous cell carcinoma of the head and neck Cancer Res 1995 55: 3117–3122

    CAS  PubMed  Google Scholar 

  7. Clayman GL, El-Naggar AK, Roth JA et al. In vivo molecular therapy with p53 adenovirus for microscopic residual head and neck squamous carcinoma Cancer Res 1995 55: 1–6

    CAS  PubMed  Google Scholar 

  8. O'Malley BW, Chen SH, Schwartz MR, Woo SLC . Adenovirus-mediated gene therapy for human head and neck squamous cell cancer in a nude mice model Cancer Res 1995 55: 1080–1085

    CAS  PubMed  Google Scholar 

  9. Clayman GL, El-Naggar AK, Lippman SM et al. Adenovirus-mediated p53 gene transfer in recurrent head and neck squamous cell carcinoma J Clin Oncol 1998 16: 2221–2232

    Article  CAS  PubMed  Google Scholar 

  10. Nemumaitis J, Bier-Laning CM, Costenta-Figueiras M, Yver A, Dreiling LK . Three phase II trials of intratumoural injection with a replication deficient adenovirus carrying the p53 gene (AD5CMV-P53) in patients with recurrent refractory head and neck cancer J Clin Oncol 1999 19: 431a Abstract

    Google Scholar 

  11. Cooper MJ . Noninfectious gene transfer and expression systems for cancer gene therapy Semin Oncol 1996 23: 172–187

    CAS  PubMed  Google Scholar 

  12. Yen N, Ioannides CG, Xu K et al. Cellular and humoral immune responses to adenovirus and p53 protein antigens in patients following intratumoral injection of an adenovirus vector expressing wild-type P53 (Ad-p53) Cancer Gene Ther 2000 7: 530–536

    Article  CAS  PubMed  Google Scholar 

  13. Nguyen DM, Spitz FR, Yen N, Cristiano RJ, Roth JA . Gene therapy for lung cancer: enhancement of tumor suppression by a combination of sequential systemic cisplatin and adenovirus-mediated p53 gene transfer J Thorac Cardiovasc Surg 1996 112: 1372–1377

    Article  CAS  PubMed  Google Scholar 

  14. Perales JC, Ferkol T, Bergen H, Ratnoff OD, Hanson RW . Gene transfer in vivo: sustained expression and regulation of genes introduced into the liver by receptor-targeted uptake Proc Natl Acad Sci USA 1994 91: 4086–4090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. O'Neill MM, Kennedy CA, Barton RW, Tatake RJ . Receptor-mediated gene delivery to human peripheral blood mononuclear cells using anti-CD3 antibody coupled to polyethylenimine Gene Ther 2001 8: 362–368

    Article  CAS  PubMed  Google Scholar 

  16. Boussif O, Lezoualc'h F, Zanta MA et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine Proc Natl Acad Sci USA 1995 92: 7297–7301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Boussif O, Zanta MA, Behr JP . Optimized galenics improve in vitro gene transfer with cationic molecules up to thousand-fold Gene Ther 1996 3: 1074–1080

    CAS  PubMed  Google Scholar 

  18. Remy JS, Abdallah B, Zanta MA, Boussif O, Behr JP, Demeneix B . Gene transfer with lipospermines and polyethyleneimines Adv Drug Deliv Rev 1998 30: 85–95

    Article  CAS  PubMed  Google Scholar 

  19. Godbey WT, Wu KK, Mikos AG . Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery Proc Natl Acad Sci USA 1999 96: 5177–5181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pollard H, Remy JS, Loussouarn G, Demolombe S, Behr JP, Escande D . Polyethylenimine but not cationic lipids promotes transgene delivery to the nucleus in mammalian cells J Biol Chem 1999 273: 7507–7511

    Article  Google Scholar 

  21. Boletta A, Benigni A, Lutz J, Remuzzi G, Soria MR, Monaco L . Nonviral gene delivery to the rat kidney with polyethyleneimine Hum Gene Ther 1997 8: 1243–1251

    Article  CAS  PubMed  Google Scholar 

  22. Goula D, Benoist C, Mantero S, Merlo G, Levi G, Demeneix BA . Polyethylenimine-based intravenous delivery of transgenes to mouse lung Gene Ther 1998 5: 1291–1295

    Article  CAS  PubMed  Google Scholar 

  23. Kircheis R, Wightman L, Schreiber A et al. Polyethylenimine/DNA complexes shielded by transferrin target gene expression to tumors after systemic application Gene Ther 2001 8: 28–40

    Article  CAS  PubMed  Google Scholar 

  24. Wang S, Ma N, Gao SJ, Yu H, Leong KW . Transgene expression in the brain stem effected by intramuscular injection of polyethylenimine/DNA complexes Mol Ther 2001 3: 658–664

    Article  CAS  PubMed  Google Scholar 

  25. Aoki K, Furuhata S, Hatanaka K et al. Polyethylenimine-mediated gene transfer into pancreatic tumor dissemination in the murine peritoneal cavity Gene Ther 2001 8: 508–514

    Article  CAS  PubMed  Google Scholar 

  26. Rudolph C, Lausier J, Naundorf S, Muller RH, Rosenecker J . In vivo gene delivery to the lung using polyethylenimine and fractured polyamidoamine dendrimers J Gene Med 2000 2: 269–278

    Article  CAS  PubMed  Google Scholar 

  27. Densmore CL, Orson FM, Xu B et al. Aerosol delivery of robust polyethyleneimine–DNA complexes for gene therapy and genetic immunization Mol Ther 2000 1: 180–188

    Article  CAS  PubMed  Google Scholar 

  28. Ogris M, Steinlein P, Kursa M, Mechtler K, Kircheis R, Wagner E . The size of DNA/transferrin–PEI complexes is an important factor for gene expression in cultured cells Gene Ther 1998 10: 1425–1433

    Article  Google Scholar 

  29. Bettinger T, Remy JS, Erbacher P . Size reduction of galactosylated PEI/DNA complexes improves lectin-mediated transfer into hepatocytes Bioconjug Chem 1999 10: 1243–1251

    Article  Google Scholar 

  30. Merlin JL, Dolivet G, Dubessy C et al. Improvement of nonviral p53 gene transfer in human carcinoma cells using glucosylated polyethylenimine derivatives Cancer Gene Ther 2001 8: 203–210

    Article  CAS  PubMed  Google Scholar 

  31. Erbacher P, Bettinger T, Belguise P et al. Transfection and physical properties of various saccharide, poly(ethyleneglycol), and antibody-derivatized polyethyleneimines (PEI) J Gene Med 1999 1: 210–222

    Article  CAS  PubMed  Google Scholar 

  32. Green NM . A spectrophotometric assay for avidin and biotin based on binding of dyes by avidin Biochem J 1965 94: 23–24

    Article  Google Scholar 

  33. Chastagner P, Merlin JL, Marchal C et al. In vivo potentiation of radiation response by topotecan in human rhabdomyosarcoma xenografted into nude mice Clin Cancer Res 2000 6: 3327–3333

    CAS  PubMed  Google Scholar 

  34. Lowe SW, Bodis S, McClatchey A et al. p53 status and the efficacy of cancer therapy in vivo Science 1994 266: 807–810

    Article  CAS  PubMed  Google Scholar 

  35. Brunner S, Sauer T, Carotta S, Cotten M, Saltik M, Wagner E . Cell cycle dependence of gene transfer using lipoplex, polyplex and recombinant adenovirus Gene Ther 2000 7: 401–407

    Article  CAS  PubMed  Google Scholar 

  36. Frank DK, Frederick MJ, Liu TJ, Clayman GL . Bystander effect in the adenovirus-mediated wild-type p53 gene therapy model of human squamous cell carcinoma of the head and neck Clin Cancer Res 1998 10: 2521–2528

    Google Scholar 

  37. Bouvet M, Ellis LM, Nishizaki M et al. Adenovirus-mediated wild-type p53 gene transfer down regulates vascular endothelial growth factor expression and inhibits angiogenesis in human colon cancer Cancer Res 1998 58: 2288–2292

    CAS  PubMed  Google Scholar 

  38. Waku T, Fujiwara T, Shao J et al. Contribution of CD95 ligand-induced neutrophil infiltration to the bystander effect in p53 gene therapy of human cancer J Immunol 2000 165: 5884–5890

    Article  CAS  PubMed  Google Scholar 

  39. Wallace-Brodeur RR, Lowe SW . Clinical implications of p53 mutations Cell Mol Life Sci 1999 55: 64–75

    Article  CAS  PubMed  Google Scholar 

  40. Raybaud-Diogene H, Fortin A, Morency R, Roy J, Monteil RA, Tetu B . Markers of radioresistance in squamous cell carcinomas of the head and neck: a clinicopathologic and immunohistochemical study J Clin Oncol 1997 15: 1030–1038

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to E Festor and S Dezan for technical assistance and to D Marius-Leprince for editorial assistance. This study was supported by grants from the French “Ligue Nationale contre le Cancer,” “Pôle Européen de Santé: Région Lorraine, Communauté Urbaine du Grand Nancy” and Alexis Vautrin Cancer Center private research funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Louis Merlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolivet, G., Merlin, JL., Barberi-Heyob, M. et al. In vivo growth inhibitory effect of iterative wild-type p53 gene transfer in human head and neck carcinoma xenografts using glucosylated polyethylenimine nonviral vector. Cancer Gene Ther 9, 708–714 (2002). https://doi.org/10.1038/sj.cgt.7700485

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700485

Keywords

This article is cited by

Search

Quick links