Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inhibition of angiogenesis in vitro by αv integrin–directed antisense oligonucleotides

Abstract

The integrin αvβ3 plays a central role in angiogenesis. In this study, we used antisense oligodeoxyribonucleotides (ONs) directed against the αv subunit of αvβ3 to inhibit integrin expression. Ten ON sequences, which were selected by systematic alignment of computer-predicted secondary structures of αv mRNA, were transfected into human umbilical vein endothelial cells (HUVECs). Following stimulation by PMA, five antisense ONs significantly inhibited αv mRNA and protein expression in activated HUVEC at a concentration of 0.05 μM with complete prevention of PMA-induced αv up-regulation by the most potent antisense ON. Inhibition of αv expression was associated with significant inhibition of migration of HUVEC by 28% and had no effect on proliferation and apoptosis. Moreover, transfection of antisense ON inhibited the formation of tube-like structures of HUVEC in Matrigel by 44%. In a cell culture model of angiogenesis consisting of a co-culture of endothelial cells with fibroblasts, transfection of antisense ONs resulted in an inhibition of tube formation of 61%. In conclusion, αv antisense ONs are potent inhibitors of angiogenesis in vitro. They might, therefore, be a therapeutic alternative to antagonists, which directly bind to αv integrins, and might be useful for the treatment of malignant tumors and hematological malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Friedlander M, Theesfeld CL, Sugita M et al. Involvement of integrins alpha v beta 3 and alpha v beta 5 in ocular neovascular diseases Proc Natl Acad Sci USA 1996 93: 9764–9769

    Article  CAS  Google Scholar 

  2. Koch AE . Review: angiogenesis: implications for rheumatoid arthritis Arthritis Rheum 1998 41: 951–962

    Article  CAS  Google Scholar 

  3. Panda D, Kundu GC, Lee BI et al. Potential roles of osteopontin and alphaVbeta3 integrin in the development of coronary artery restenosis after angioplasty Proc Natl Acad Sci USA 1997 94: 9308–9313

    Article  CAS  Google Scholar 

  4. Varner JA, Brooks PC, Cheresh DA . REVIEW: the integrin alpha V beta 3: angiogenesis and apoptosis Cell Adhes Commun 1995 3: 367–374

    Article  CAS  Google Scholar 

  5. Brooks PC, Clark RA, Cheresh DA . Requirement of vascular integrin alpha v beta 3 for angiogenesis Science 1994 264: 569–571

    Article  CAS  Google Scholar 

  6. Friedlander M, Brooks PC, Shaffer RW, Kincaid CM, Varner JA, Cheresh DA . Definition of two angiogenic pathways by distinct alpha v integrins Science 1995 270: 1500–1502

    Article  CAS  Google Scholar 

  7. Cheresh DA . Human endothelial cells synthesize and express an Arg–Gly–Asp–directed adhesion receptor involved in attachment to fibrinogen and von Willebrand factor Proc Natl Acad Sci USA 1987 84: 6471–6475

    Article  CAS  Google Scholar 

  8. Eliceiri BP, Cheresh DA . Role of alpha v integrins during angiogenesis Cancer J Sci Am 2000 6: S245–S249

    Google Scholar 

  9. Brooks PC . Role of integrins in angiogenesis Eur J Cancer 1996 32A: 2423–2429

    Article  CAS  Google Scholar 

  10. Brooks PC, Montgomery AM, Rosenfeld M et al. Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels Cell 1994 79: 1157–1164

    Article  CAS  Google Scholar 

  11. Sepp NT, Li LJ, Lee KH et al. Basic fibroblast growth factor increases expression of the alpha v beta 3 integrin complex on human microvascular endothelial cells J Invest Dermatol 1994 103: 295–299

    Article  CAS  Google Scholar 

  12. Wu H, Beuerlein G, Nie Y et al. Stepwise in vitro affinity maturation of Vitaxin, an alphav beta3–specific humanized mAb Proc Natl Acad Sci USA 1998 95: 6037–6042

    Article  CAS  Google Scholar 

  13. Brooks PC, Stromblad S, Klemke R, Visscher D, Sarkar FH, Cheresh DA . Antiintegrin alpha v beta 3 blocks human breast cancer growth and angiogenesis in human skin J Clin Invest 1995 96: 1815–1822

    Article  CAS  Google Scholar 

  14. Lode HN, Moehler T, Xiang R et al. Synergy between an antiangiogenic integrin alphav antagonist and an antibody–cytokine fusion protein eradicates spontaneous tumor metastases Proc Natl Acad Sci USA 1999 96: 1591–1596

    Article  CAS  Google Scholar 

  15. Hammes HP, Brownlee M, Jonczyk A, Sutter A, Preissner KT . Subcutaneous injection of a cyclic peptide antagonist of vitronectin receptor-type integrins inhibits retinal neovascularization Nat Med 1996 2: 529–533

    Article  CAS  Google Scholar 

  16. Choi ET, Engel L, Callow AD et al. Inhibition of neointimal hyperplasia by blocking alpha V beta 3 integrin with a small peptide antagonist GpenGRGDSPCA J Vasc Surg 1994 19: 125–134

    Article  CAS  Google Scholar 

  17. Storgard CM, Stupack DG, Jonczyk A, Goodman SL, Fox RI, Cheresh DA . Decreased angiogenesis and arthritic disease in rabbits treated with an alphavbeta3 antagonist J Clin Invest 1999 103: 47–54

    Article  CAS  Google Scholar 

  18. Keenan RM, Miller WH, Kwon C et al. Discovery of potent nonpeptide vitronectin receptor (alpha v beta 3) antagonists J Med Chem 1997 40: 2289–2292

    Article  CAS  Google Scholar 

  19. Nicolaou KC, Trujillo JI, Jandeleit B et al. Design, synthesis and biological evaluation of nonpeptide integrin antagonists Bioorg Med Chem 1998 6: 1185–1208

    Article  CAS  Google Scholar 

  20. Steidl U, Haas R, Kronenwett R . Intercellular adhesion molecule 1 on monocytes mediates adhesion as well as trans-endothelial migration and can be downregulated using antisense oligonucleotides Ann Hematol 2000 79: 414–423

    Article  CAS  Google Scholar 

  21. Stein CA, Cheng YC . Antisense oligonucleotides as therapeutic agents — is the bullet really magical? Science 1993 261: 1004–1012

    Article  CAS  Google Scholar 

  22. Kronenwett R, Haas R . Antisense strategies for the treatment of hematological malignancies and solid tumors Ann Hematol 1998 77: 1–12

    Article  CAS  Google Scholar 

  23. Roush W . Antisense aims for a renaissance Science 1997 276: 1192–1193

    Article  CAS  Google Scholar 

  24. Waters JS, Webb A, Cunningham D et al. Phase I clinical and pharmacokinetic study of bcl-2 antisense oligonucleotide therapy in patients with non-Hodgkin's lymphoma J Clin Oncol 2000 18: 1812–1823

    Article  CAS  Google Scholar 

  25. Nemunaitis J, Holmlund JT, Kraynak M et al. Phase I evaluation of ISIS 3521, an antisense oligodeoxynucleotide to protein kinase C-alpha, in patients with advanced cancer J Clin Oncol 1999 17: 3586–3595

    Article  CAS  Google Scholar 

  26. Stevenson JP, Yao KS, Gallagher M et al. Phase I clinical/pharmacokinetic and pharmacodynamic trial of the c-raf-1 antisense oligonucleotide ISIS 5132 (CGP 69846A) J Clin Oncol 1999 17: 2227–2236

    Article  CAS  Google Scholar 

  27. Patzel V, Steidl U, Kronenwett R, Haas R, Sczakiel G . Atheoretical approach to select effective antisense oligodeoxyribonucleotides at high statistical probability Nucleic Acids Res 1999 27: 4328–4334

    Article  CAS  Google Scholar 

  28. Senger M, Glatting KH, Ritter O, Suhai S . X-HUSAR, an X-based graphical interface for the analysis of genomic sequences Comput Methods Programs Biomed 1995 46: 131–141

    Article  CAS  Google Scholar 

  29. Suzuki S, Argraves WS, Arai H, Languino LR, Pierschbacher MD, Ruoslahti E . Amino acid sequence of the vitronectin receptor alpha subunit and comparative expression of adhesion receptor mRNAs J Biol Chem 1987 262: 14080–14085

    CAS  PubMed  Google Scholar 

  30. Swerlick RA, Brown EJ, Xu Y, Lee KH, Manos S, Lawley TJ . Expression and modulation of the vitronectin receptor on human dermal microvascular endothelial cells J Invest Dermatol 1992 99: 715–722

    Article  CAS  Google Scholar 

  31. Cross NC, Melo JV, Feng L, Goldman JM . An optimized multiplex polymerase chain reaction (PCR) for detection of BCR–ABL fusion mRNAs in haematological disorders Leukemia 1994 8: 186–189

    CAS  Google Scholar 

  32. Rasmussen R . Quantification on the LightCycler Rapid Cycle Real-Time PCR, Methods and Applications Berlin: Springer-Verlag 2001 21–34

    Chapter  Google Scholar 

  33. Nicosia RF, Ottinetti A . Modulation of microvascular growth and morphogenesis by reconstituted basement membrane gel inthree-dimensional cultures of rat aorta: a comparative study of angiogenesis in Matrigel, collagen, fibrin, and plasma clot In Vitro Cell Dev Biol 1990 26: 119–128

    Article  CAS  Google Scholar 

  34. Bishop ET, Bell GT, Bloor S, Broom IJ, Hendry NFK, Wheatley DN . An in vitro model of angiogenesis: basic features Angiogenesis 1999 3: 335–344

    Article  CAS  Google Scholar 

  35. Gagliardi A, Hadd H, Collins DC . Inhibition of angiogenesis by suramin Cancer Res 1992 52: 5073–5075

    CAS  PubMed  Google Scholar 

  36. Stein CA . The experimental use of antisense oligonucleotides: a guide for the perplexed J Clin Invest 2001 108: 641–644

    Article  CAS  Google Scholar 

  37. Dallabrida SM, De Sousa MA, Farrell DH . Expression of antisense to integrin subunit beta 3 inhibits microvascular endothelial cell capillary tube formation in fibrin J Biol Chem 2000 275: 32281–32288

    Article  CAS  Google Scholar 

  38. Hodivala-Dilke KM, McHugh KP, Tsakiris DA et al. Beta3-integrin–deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival J Clin Invest 1999 103: 229–238

    Article  CAS  Google Scholar 

  39. Gutheil JC, Campbell TN, Pierce PR et al. Targeted antiangiogenic therapy for cancer using Vitaxin: a humanized monoclonal antibody to the integrin alphavbeta3 Clin Cancer Res 2000 6: 3056–3061

    CAS  Google Scholar 

  40. Wada J, Kumar A, Liu Z et al. Cloning of mouse integrin alphaV cDNA and role of the alphaV-related matrix receptors in metanephric development J Cell Biol 1996 132: 1161–1176

    Article  CAS  Google Scholar 

  41. Villanova I, Townsend PA, Uhlmann E et al. Oligodeoxynucleotide targeted to the alphav gene inhibits alphav integrin synthesis, impairs osteoclast function, and activates intracellular signals to apoptosis J Bone Miner Res 1999 14: 1867–1879

    Article  CAS  Google Scholar 

  42. Gehlsen KR, Davis GE, Sriramarao P . Integrin expression in human melanoma cells with differing invasive and metastatic properties Clin Exp Metastasis 1992 10: 111–120

    Article  CAS  Google Scholar 

  43. Gladson CL, Cheresh DA . Glioblastoma expression of vitronectin and the alpha v beta 3 integrin. Adhesion mechanism for transformed glial cells J Clin Invest 1991 88: 1924–1932

    Article  CAS  Google Scholar 

  44. Marshall JF, Hart IR . The role of alpha v-integrins in tumour progression and metastasis Semin Cancer Biol 1996 7: 129–138

    Article  CAS  Google Scholar 

  45. Meyer T, Marshall JF, Hart IR . Expression of alphav integrins and vitronectin receptor identity in breast cancer cells Br J Cancer 1998 77: 530–536

    Article  CAS  Google Scholar 

  46. Albelda SM, Mette SA, Elder DE et al. Integrin distribution in malignant melanoma: association of the beta 3 subunit with tumor progression Cancer Res 1990 50: 6757–6764

    CAS  PubMed  Google Scholar 

  47. Petitclerc E, Stromblad S, von Schalscha TL et al. Integrin alpha(v)beta3 promotes M21 melanoma growth in human skinby regulating tumor cell survival Cancer Res 1999 59: 2724–2730

    CAS  Google Scholar 

  48. Mitjans F, Meyer T, Fittschen C et al. In vivo therapy of malignant melanoma by means of antagonists of alphav integrins Int J Cancer 2000 87: 716–723

    Article  CAS  Google Scholar 

  49. Huang S, Stupack D, Liu A, Cheresh D, Nemerow GR . Cell growth and matrix invasion of EBV-immortalized human B lymphocytes is regulated by expression of alpha(v) integrins Oncogene 2000 19: 1915–1923

    Article  CAS  Google Scholar 

  50. Kozlova NI, Morozevich GE, Chubukina AN, Berman AE . Integrin alphavbeta3 promotes anchorage-dependent apoptosis in human intestinal carcinoma cells Oncogene 2001 20: 4710–4717

    Article  CAS  Google Scholar 

  51. Townsend PA, Villanova I, Uhlmann E et al. An antisense oligonucleotide targeting the alphaV integrin gene inhibits adhesion and induces apoptosis in breast cancer cells Eur J Cancer 2000 36: 397–409

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of the Deutsche Krebshilfe (no. 10-1376) and by the Leukämie Liga Düsseldorf.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Kronenwett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kronenwett, R., Gräf, T., Nedbal, W. et al. Inhibition of angiogenesis in vitro by αv integrin–directed antisense oligonucleotides. Cancer Gene Ther 9, 587–596 (2002). https://doi.org/10.1038/sj.cgt.7700474

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700474

Keywords

This article is cited by

Search

Quick links