Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Intra-arterial delivery of p53-containing adenoviral vector into experimental brain tumors

Abstract

Human tumor xenografts established in athymic rat brains were used to determine the feasibility of intravascular delivery of tumor suppressor genes to brain tumors. Both tumor size and number were compared to characterize the effect of tumor burden on tumor transduction efficacy by a control LacZ-containing adenoviral vector. Experiments with tumors grown in vivo for either 3, 5, or 7 days demonstrated that 5-day-old tumors provided the best target for vector infection and transgene expression by this mode of administration. Intra-arterial mannitol facilitated transduction efficiency. Tumor burden did not seem to affect transduction, while tumor location appeared to be an important factor. Based on these results, intra-arterial infusion of a p53-containing adenoviral vector was carried out and resulted in significant retardation of brain tumor growth 3 days after administration. Effects at longer time points were not as significant. These findings indicate that intra-arterial administration of adenoviral vectors containing p53 is efficient and can result in changes in tumor size, but that long-term control of tumor growth may require multiple adenoviral treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Duncan EL, Reddel RR . Genetic changes associated with immortalization. A review Biochemistry (Moscow) 1997 62: 1263–1274

    CAS  Google Scholar 

  2. Chin L, Pomerantz J, DePinho RA . The INK4a/ARF tumor suppressor: one gene–two products–two pathways Trends Biochem Sci 1998 23: 291–296

    Article  CAS  Google Scholar 

  3. Carnero A, Hudson JD, Price CM, Beach DH . p16INK4A and p19ARF act in overlapping pathways in cellular immortalization [see comments] Nat Cell Biol 2000 2: 148–155

    Article  CAS  Google Scholar 

  4. Nielsen LL, Maneval DC . P53 tumor suppressor gene therapy for cancer Cancer Gene Ther 1998 5: 52–63

    CAS  PubMed  Google Scholar 

  5. Anderson SC, Johnson DE, Harris MP et al. p53 gene therapy in a rat model of hepatocellular carcinoma: intra-arterial delivery of a recombinant adenovirus Clin Cancer Res 1998 4: 1649–1659

    CAS  PubMed  Google Scholar 

  6. Badie B, Drazan KE, Kramar MH, Shaked A, Black KL . Adenovirus-mediated p53 gene delivery inhibits 9L glioma growth in rats Neurol Res 1995 17: 209–216

    Article  CAS  Google Scholar 

  7. Clayman GL, el-Naggar AK, Roth JA et al. In vivo molecular therapy with p53 adenovirus for microscopic residual head and neck squamous carcinoma Cancer Res 1995 55: 1–6

    CAS  PubMed  Google Scholar 

  8. Markert JM, Medlock MD, Rabkin SD et al. Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial [see comments] Gene Ther 2000 7: 867–874

    Article  CAS  Google Scholar 

  9. Sandmair AM, Loimas S, Puranen P et al. Thymidine kinase gene therapy for human malignant glioma, using replication-deficient retroviruses or adenoviruses conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial Hum Gene Ther 2000 11: 2197–2205

    Article  CAS  Google Scholar 

  10. Harsh GR, Deisboeck TS, Louis DN et al. Thymidine kinase activation of ganciclovir in recurrent malignant gliomas: a gene-marking and neuropathological study J Neurosurg 2000 92: 804–811

    Article  CAS  Google Scholar 

  11. Ram Z, Culver KW, Oshiro EM et al. Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells [see comments] Nat Med 1997 3: 1354–1361

    Article  CAS  Google Scholar 

  12. Muldoon LL, Nilaver G, Kroll RA et al. Comparison of intracerebral inoculation and osmotic BBB disruption for delivery of adenovirus, herpesvirus, and iron oxide particles to normal rat brain Am J Pathol 1995 147: 1840–1851

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Carew JF, Federoff H, Halterman M et al. Efficient gene transfer to human squamous cell carcinomas by the herpes simplex virus type 1 amplicon vector Am J Surg 1998 176: 404–408

    Article  CAS  Google Scholar 

  14. Rainov NG, Dobberstein KU, Heidecke V et al. Long-term survival in a rodent brain tumor model by bradykinin-enhanced intra-arterial delivery of a therapeutic herpes simplex virus vector Cancer Gene Ther 1998 5: 158–162

    CAS  PubMed  Google Scholar 

  15. Ikeda K, Ichikawa T, Wakimoto H et al. Oncolytic virus therapy of multiple tumors in the brain requires suppression of innate and elicited antiviral responses Nat Med 1999 5: 881–887

    Article  CAS  Google Scholar 

  16. Ikeda K, Wakimoto H, Ichikawa T et al. Complement depletion facilitates the infection of multiple brain tumors by an intravascular, replication-conditional herpes simplex virus mutant J Virol 2000 74: 4765–4775

    Article  CAS  Google Scholar 

  17. Nishikawa R, Ji XD, Harmon RC et al. A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity Proc Natl Acad Sci USA 1994 91: 7727–7731

    Article  CAS  Google Scholar 

  18. Wills KN, Maneval DC, Menzel P et al. Development and characterization of recombinant adenoviruses encoding human p53 for gene therapy of cancer Hum Gene Ther 1994 5: 1079–1088

    Article  CAS  Google Scholar 

  19. Cheney IW, Johnson DE, Vaillancourt MT et al. Suppression of tumorigenicity of glioblastoma cells by adenovirus-mediated MMAC1/PTEN gene transfer Cancer Res 1998 58: 2331–2334

    CAS  PubMed  Google Scholar 

  20. Huyghe BG, Liu X, Sutjipto S et al. Purification of a type 5 recombinant adenovirus encoding human p53 by column chromatography Hum Gene Ther 1995 6: 1403–1416

    Article  CAS  Google Scholar 

  21. Shabram PW, Giroux DD, Goudreau AM et al. Analytical anion-exchange HPLC of recombinant type-5 adenoviral particles Hum Gene Ther 1997 8: 453–465

    Article  CAS  Google Scholar 

  22. Kroll RA, Neuwelt EA . Outwitting the blood–brain barrier for therapeutic purposes: osmotic opening and other means Neurosurgery 1998 42: 1083–99 discussion 1099–1100

    Article  CAS  Google Scholar 

  23. Vajkoczy P, Schilling L, Ullrich A, Schmiedek P, Menger MD . Characterization of angiogenesis and microcirculation of high-grade glioma: an intravital multifluorescence microscopic approach in the athymic nude mouse J Cereb Blood Flow Metab 1998 18: 510–520

    Article  CAS  Google Scholar 

  24. Couffinhal T, Kearney M, Sullivan A, Silver M, Tsurumi Y, Isner JM . Histochemical staining following LacZ gene transfer underestimates transfection efficiency Hum Gene Ther 1997 8: 929–934

    Article  CAS  Google Scholar 

  25. Li Z, Rakkar A, Katayose Y et al. Efficacy of multiple administrations of a recombinant adenovirus expressing wild-type p53 in an immune-competent mouse tumor model Gene Ther 1998 5: 605–613

    Article  CAS  Google Scholar 

  26. Nishizaki M, Fujiwara T, Tanida T et al. Recombinant adenovirus expressing wild-type p53 is antiangiogenic: a proposed mechanism for bystander effect Clin Cancer Res 1999 5: 1015–1023

    CAS  PubMed  Google Scholar 

  27. Schellingerhout D, Bogdanov A Jr, Marecos E, Spear M, Breakefield X, Weissleder R . Mapping the in vivo distribution of herpes simplex virions Hum Gene Ther 1998 9: 1543–1549

    Article  CAS  Google Scholar 

  28. Tsujie M, Isaka Y, Nakamura H, Kaneda Y, Imai E, Hori M . Prolonged transgene expression in glomeruli using an EBV replicon vector system combined with HVJ liposomes Kidney Int 2001 59: 1390–1396

    Article  CAS  Google Scholar 

  29. Badie B, Kramar MH, Lau R, Boothman DA, Economou JS, Black KL . Adenovirus-mediated p53 gene delivery potentiates the radiation-induced growth inhibition of experimental brain tumors J Neurooncol 1998 37: 217–222

    Article  CAS  Google Scholar 

  30. Kataoka M, Schumacher G, Cristiano RJ, Atkinson EN, Roth JA, Mukhopadhyay T . An agent that increases tumor suppressor transgene product coupled with systemic transgene delivery inhibits growth of metastatic lung cancer in vivo Cancer Res 1998 58: 4761–4765

    CAS  PubMed  Google Scholar 

  31. Roth JA, Swisher SG, Meyn RE . p53 tumor suppressor gene therapy for cancer Oncology (Huntington) 1999 13: 148–154

    CAS  Google Scholar 

  32. Gjerset RA, Mercola D . Sensitization of tumors to chemotherapy through gene therapy Adv Exp Med Biol 2000 465: 273–291

    Article  CAS  Google Scholar 

  33. Lang FF, Yung WK, Sawaya R, Tofilon PJ . Adenovirus-mediated p53 gene therapy for human gliomas Neurosurgery 1999 45: 1093–1104

    Article  CAS  Google Scholar 

  34. Trepel M, Groscurth P, Malipiero U, Gulbins E, Dichgans J, Weller M . Chemosensitivity of human malignant glioma: modulation by p53 gene transfer J Neurooncol 1998 39: 19–32

    Article  CAS  Google Scholar 

  35. Dorigo O, Turla ST, Lebedeva S, Gjerset RA . Sensitization of rat glioblastoma multiforme to cisplatin in vivo following restoration of wild-type p53 function J Neurosurg 1998 88: 535–540

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by a grant from Schering-Plough to EAC. Special thanks to Dr P Rioux for his statistical analysis of the data, and Dr W Robert Bishop for his support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James P Basilion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abe, T., Wakimoto, H., Bookstein, R. et al. Intra-arterial delivery of p53-containing adenoviral vector into experimental brain tumors. Cancer Gene Ther 9, 228–235 (2002). https://doi.org/10.1038/sj.cgt.7700437

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700437

Keywords

This article is cited by

Search

Quick links