Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cancer therapy utilizing an adenoviral vector expressing only E1A

Abstract

The human adenovirus type 5 (Ad5) early region 1A (E1A) proteins have been shown to have potent antitumor effects, due to their ability to reprogram oncogenic signalling pathways in tumor cells. The success of E1A antitumor therapy in animal models has led to its use in phase I and phase II clinical trials, where liposome-based delivery vehicles are being used to deliver a plasmid encoding E1A. To increase the efficiency of E1A delivery to tumors, we have developed an Ad vector deleted of all viral protein coding sequences (termed helper-dependent Ad vectors, hdAds) with the exception of E1A, designated hdAd-E1A. In culture, this vector mediated high-level expression of E1A gene products. A549 cells, a human lung adenocarcinoma cell line, infected with hdAd-E1A showed a reduced proliferative capacity in adherent culture, and the ability to form colonies in soft agarose was completely abolished. In contrast, A549 infected with an hdAd expressing β-gal were able to form colonies of a similar size and frequency as uninfected cells. Under serum-depleted conditions, expression of E1A within A549 led to the induction of apoptosis. Finally, A549 cells treated with hdAd-E1A showed approximately 10-fold greater sensitivity to the chemotherapeutic drug cisplatin. Taken together, these data indicate that the use of hdAd provides a simple and effective method to deliver E1A to cancer cells, and results in reduction in the tumorigenic potential of the cells, as well as increasing the cells sensitivity to anticancer drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Shenk T . Adenoviridae: the viruses and their replication In: Fields BN, Knipe DM, Howley PM, eds Fields Virology 67 vol: Philadelphia: Lippincott-Raven Publishers 1996 2111–2148

    Google Scholar 

  2. Sarnow P, Ho YS, Williams J, Levine AJ . Adenovirus E1b-58kd tumor antigen and SV40 large tumor antigen are physically associated with the same 54 kd cellular protein in transformed cells Cell 1982 28: 387–394

    Article  CAS  PubMed  Google Scholar 

  3. Grand RJ, Grant ML, Gallimore PH . Enhanced expression of p53 in human cells infected with mutant adenoviruses Virology 1994 203: 229–240

    Article  CAS  PubMed  Google Scholar 

  4. Lundblad JR, Kwok RP, Laurance ME, Harter ML, Goodman RH . Adenoviral E1A-associated protein p300 as a functional homologue of the transcriptional co-activator CBP Nature 1995 374: 85–88

    Article  CAS  PubMed  Google Scholar 

  5. Arany Z, Newsome D, Oldread E, Livingston DM, Eckner R . A family of transcriptional adaptor proteins targeted by the E1A oncoprotein Nature 1995 374: 81–84

    Article  CAS  PubMed  Google Scholar 

  6. Reid JL, Bannister AJ, Zegerman P, Martinez-Balbas MA, Kouzarides T . E1A directly binds and regulates the P/CAF acetyltransferase EMBO J 1998 17: 4469–4477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Boyd JM, Subramanian T, Schaeper U, La Regina M, Bayley S, Chinnadurai G . A region in the C-terminus of adenovirus 2/5 E1a protein is required for association with a cellular phosphoprotein and important for the negative modulation of T24-ras mediated transformation, tumorigenesis and metastasis EMBO J 1993 12: 469–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yee SP, Branton PE . Detection of cellular proteins associated with human adenovirus type 5 early region 1A polypeptides Virology 1985 147: 142–153

    Article  CAS  PubMed  Google Scholar 

  9. Giordano A, McCall C, Whyte P, Franza BR Jr . Human cyclin A and the retinoblastoma protein interact with similar but distinguishable sequences in the adenovirus E1A gene product Oncogene 1991 6: 481–485

    CAS  PubMed  Google Scholar 

  10. Harlow E, Whyte P, Franza BR Jr, Schley C . Association of adenovirus early-region 1A proteins with cellular polypeptides Mol Cell Biol 1986 6: 1579–1589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mymryk JS . Tumour suppressive properties of the adenovirus 5 E1A oncogene Oncogene 1996 13: 1581–1589

    CAS  PubMed  Google Scholar 

  12. Frisch SM . Tumor suppression activity of adenovirus E1a protein: anoikis and the epithelial phenotype Adv Cancer Res 2001 80: 39–49

    Article  CAS  PubMed  Google Scholar 

  13. Frisch SM, Dolter KE . Adenovirus E1A-mediated tumor suppression by a c-erbB-2/neu-independent mechanism Cancer Res 1995 55: 5551–5555

    CAS  PubMed  Google Scholar 

  14. Frisch SM . Antioncogenic effect of adenovirus E1A in human tumor cells Proc Natl Acad Sci USA 1991 88: 9077–9081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Frisch SM, Reich R, Collier IE, Genrich LT, Martin G, Goldberg GI . Adenovirus E1A represses protease gene expression and inhibits metastasis of human tumor cells Oncogene 1990 5: 75–83

    CAS  PubMed  Google Scholar 

  16. Sanchez-Prieto R, Quintanilla M, Cano A et al. Carcinoma cell lines become sensitive to DNA-damaging agents by the expression of the adenovirus E1A gene Oncogene 1996 13: 1083–1092

    PubMed  Google Scholar 

  17. Shao R, Hu MC, Zhou BP et al. E1A sensitizes cells to tumor necrosis factor-induced apoptosis through inhibition of IkappaB kinases and nuclear factor kappaB activities J Biol Chem 1999 274: 21495–21498

    Article  CAS  PubMed  Google Scholar 

  18. Ueno NT, Yu D, Hung MC . Chemosensitization of HER-2/neu-overexpressing human breast cancer cells to paclitaxel (Taxol) by adenovirus type 5 E1A Oncogene 1997 15: 953–960

    Article  CAS  PubMed  Google Scholar 

  19. Shao R, Karunagaran D, Zhou BP et al. Inhibition of nuclear factor-kappaB activity is involved in E1A-mediated sensitization of radiation-induced apoptosis J Biol Chem 1997 272: 32739–32742

    Article  CAS  PubMed  Google Scholar 

  20. Vanhaesebroeck B, Timmers HT, Pronk GJ, van Roy F, Van der Eb AJ, Fiers W . Modulation of cellular susceptibility to the cytotoxic/cytostatic action of tumor necrosis factor by adenovirus E1 gene expression is cell type-dependent Virology 1990 176: 362–368

    Article  CAS  PubMed  Google Scholar 

  21. Chen MJ, Holskin B, Strickler J et al. Induction by E1A oncogene expression of cellular susceptibility to lysis by TNF Nature 1987 330: 581–583

    Article  CAS  PubMed  Google Scholar 

  22. Stiewe T, Parssanedjad K, Esche H, Opalka B, Putzer BM . E1A overcomes the apoptosis block in BCR-ABL+ leukemia cells and renders cells susceptible to induction of apoptosis by chemotherapeutic agents Cancer Res 2000 60: 3957–3964

    CAS  PubMed  Google Scholar 

  23. Zhou Z, Jia SF, Hung MC, Kleinerman ES . E1A sensitizes HER2/neu-overexpressing Ewing's sarcoma cells to topoisomerase II-targeting anticancer drugs Cancer Res 2001 61: 3394–3398

    CAS  PubMed  Google Scholar 

  24. Shao R, Xia W, Hung MC . Inhibition of angiogenesis and induction of apoptosis are involved in E1A-mediated bystander effect and tumor suppression Cancer Res 2000 60: 3123–3126

    CAS  PubMed  Google Scholar 

  25. Summary. Human gene marker/therapy clinical protocols (complete updated listings) Hum Gene Ther 2001 12: 1153–1236

  26. Yoo GH, Hung MC, Lopez-Berestein G et al. Phase I trial of intratumoral liposome e1a gene therapy in patients with recurrent breast and head and neck cancer Clin Cancer Res 2001 7: 1237–1245

    CAS  PubMed  Google Scholar 

  27. Parks RJ, Chen L, Anton M, Sankar U, Rudnicki MA, Graham FL . A helper-dependent adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packaging signal Proc Natl Acad Sci USA 1996 93: 13565–13570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thomas CE, Schiedner G, Kochanek S, Castro MG, Lowenstein PR . Peripheral infection with adenovirus causes unexpected long-term brain inflammation in animals injected intracranially with first-generation, but not with high-capacity, adenovirus vectors: toward realistic long-term neurological gene therapy for chronic diseases Proc Natl Acad Sci USA 2000 97: 7482–7487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Morral N, Parks RJ, Zhou H et al. High doses of a helper-dependent adenoviral vector yield supraphysiological levels of alpha1-antitrypsin with negligible toxicity Hum Gene Ther 1998 9: 2709–2716

    Article  CAS  PubMed  Google Scholar 

  30. O'Neal WK, Zhou H, Morral N et al. Toxicity associated with repeated administration of first-generation adenovirus vectors does not occur with a helper-dependent vector Mol Med 2000 6: 179–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Graham FL, Smiley J, Russell WC, Nairn R . Characteristics of a human cell line transformed by DNA from human adenovirus type 5 J Gen Virol 1977 36: 59–74

    Article  CAS  PubMed  Google Scholar 

  32. Hitt M, Bett AJ, Addison CL, Prevec L, Graham FL . Techniques for human adenovirus vector construction and characterization Methods Mol Genet 1995 7: 13–30

    Article  CAS  Google Scholar 

  33. Chen L, Anton M, Graham FL . Production and characterization of human 293 cell lines expressing the site-specific recombinase Cre Somatic Cell Mol Genet 1996 22: 477–488

    Article  CAS  Google Scholar 

  34. Parks RJ, Graham FL . A helper-dependent system for adenovirus vector production helps define a lower limit for efficient DNA packaging J Virol 1997 71: 3293–3298

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Parks RJ, Bramson JL, Wan Y, Addison CL, Graham FL . Effects of stuffer DNA on transgene expression from helper-dependent adenovirus vectors J Virol 1999 73: 8027–8034

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Deng J, Xia W, Hung MC . Adenovirus 5 E1A-mediated tumor suppression associated with E1A-mediated apoptosis in vivo Oncogene 1998 17: 2167–2175

    Article  CAS  PubMed  Google Scholar 

  37. Bischoff JR, Kirn DH, Williams A et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells Science 1996 274: 373–376

    Article  CAS  PubMed  Google Scholar 

  38. Dix BR, Edwards SJ, Braithwaite AW . Does the antitumor adenovirus ONYX-015/dl1520 selectively target cells defective in the p53 pathway? J Virol 2001 75: 5443–5447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gonzalez VM, Fuertes MA, Alonso C, Perez JM . Is cisplatin-induced cell death always produced by apoptosis? Mol Pharmacol 2001 59: 657–663

    Article  CAS  PubMed  Google Scholar 

  40. Sanchez-Prieto R, Lleonart M, Ramon y Cajal S . Lack of correlation between p53 protein level and sensitivity of DNA-damaging agents in keratinocytes carrying adenovirus E1a mutants Oncogene 1995 11: 675–682

    CAS  PubMed  Google Scholar 

  41. Chiou SK, Tseng CC, Rao L, White E . Functional complementation of the adenovirus E1B 19-kilodalton protein with Bcl-2 in the inhibition of apoptosis in infected cells J Virol 1994 68: 6553–6566

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Putzer BM, Stiewe T, Parssanedjad K, Rega S, Esche H . E1A is sufficient by itself to induce apoptosis independent of p53 and other adenoviral gene products Cell Death Differ 2000 7: 177–188

    Article  CAS  PubMed  Google Scholar 

  43. de Stanchina E, McCurrach ME, Zindy F et al. E1A signaling to p53 involves the p19(ARF) tumor suppressor Genes Dev 1998 12: 2434–2442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang CY, Mayo MW, Baldwin AS Jr . TNF- and cancer therapy–induced apoptosis: potentiation by inhibition of NF-kappaB Science 1996 274: 784–787

    Article  CAS  PubMed  Google Scholar 

  45. Liu ZG, Hsu H, Goeddel DV, Karin M . Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death Cell 1996 87: 565–576

    Article  CAS  PubMed  Google Scholar 

  46. Beg AA, Baltimore D . An essential role for NF-kappaB in preventing TNF-alpha–induced cell death Science 1996 274: 782–784

    Article  CAS  PubMed  Google Scholar 

  47. Van Antwerp DJ, Martin SJ, Kafri T, Green DR, Verma IM . Suppression of TNF-alpha–induced apoptosis by NF-kappaB Science 1996 274: 787–789

    Article  CAS  PubMed  Google Scholar 

  48. Borrelli E, Hen R, Chambon P . Adenovirus-2 E1A products repress enhancer-induced stimulation of transcription Nature 1984 312: 608–612

    Article  CAS  PubMed  Google Scholar 

  49. Chang JY, Xia W, Shao R et al. The tumor suppression activity of E1A in HER-2/neu–overexpressing breast cancer Oncogene 1997 14: 561–568

    Article  CAS  PubMed  Google Scholar 

  50. Schiedner G, Morral N, Parks RJ et al. Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity Nat Genet 1998 18: 180–183

    Article  CAS  PubMed  Google Scholar 

  51. Burcin MM, Schiedner G, Kochanek S, Tsai SY, O'Malley BW . Adenovirus-mediated regulable target gene expression in vivo Proc Natl Acad Sci USA 1999 96: 355–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Aurisicchio L, Delmastro P, Salucci V et al. Liver-specific alpha 2 interferon gene expression results in protection from induced hepatitis In Process Citation J Virol 2000 74: 4816–4823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Putzer BM, Stiewe T, Crespo F, Esche H . Improved safety through tamoxifen-regulated induction of cytotoxic genes delivered by Ad vectors for cancer gene therapy Gene Ther 2000 7: 1317–1325

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Drs David J Picketts and Brigitte M Pützer for valuable discussion and for critically evaluating this manuscript. We thank Madeline Pool for photographic and technical assistance. This research was supported by funds provided by the Canadian Institutes of Health Research (RJP), Premier's Research Excellence Award (RJP), and the Natural Sciences and Engineering Research Council (AVH). RJP is a Canadian Institutes of Health New Investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin J Parks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hubberstey, A., Pavliv, M. & Parks, R. Cancer therapy utilizing an adenoviral vector expressing only E1A. Cancer Gene Ther 9, 321–329 (2002). https://doi.org/10.1038/sj.cgt.7700436

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700436

Keywords

This article is cited by

Search

Quick links