Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Simultaneous inhibition of Rac1 and IKK pathways sensitizes lung cancer cells to TNFα-mediated apoptosis

Abstract

Lung cancer is the most frequently occurring cancer in the world and causes more deaths in the United States than does colon, breast, and prostate cancer combined. Despite advances in treatment modalities including radiation, surgery, and chemotherapy, the overall survival in lung cancer remains low. The cytokine tumor necrosis factor α (TNFα) has been shown to regulate both apoptotic and antiapoptotic pathways. Activation of the transcription factor NF-κB appears to be the critical determinant of the antiapoptotic response to TNFα exposure in epithelial cells. A549 human lung carcinoma cells were infected with adenoviral constructs carrying dominant negative mutants of Rac1 and IKK or constitutively active mutant of Rac1, upstream effectors in TNF-mediated NF-κB activation. Cell death, apoptosis, and NF-κB activation were subsequently measured in response to TNFα exposure. Although TNFα alone had no cytotoxic effect, the expression of the dominant negative mutant of IKKβ (Ad.IKKβKA) resulted in apoptotic cell death following TNFα exposure. Similarly, dominant negative mutant to Rac1 (Ad.N17Rac1) further sensitized A549 cells to IKKβKA-mediated TNFα-induced cell death. Conversely, a dominant active form of Rac1 (Ad.V12Rac1) ameliorated the cell death response to concurrent IKKβ dominant negative mutant infection and TNFα exposure. These results suggest that concurrent inhibition of Rac1 and IKK pathways sensitizes lung cancer cells to TNFα-induced apoptosis. Cancer Gene Therapy (2001) 8, 897–905

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Reed JC . Mechanisms of apoptosis Am J Pathol 2000 157: 1415–1430

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Martin SJ, Green DR, Cotter TG . Dicing with death: dissecting the components of the apoptosis machinery Trends Biochem Sci 1994 19: 26–30

    CAS  PubMed  Google Scholar 

  3. White E . Life, death, and the pursuit of apoptosis Genes Dev 1996 10: 1–15

    CAS  PubMed  Google Scholar 

  4. Martin SJ, Green DR . Apoptosis as a goal of cancer therapy Curr Opin Oncol 1994 6: 616–621

    CAS  PubMed  Google Scholar 

  5. Venters HD, Dantzer R, Kelley KW . A new concept in neurodegeneration: TNF-alpha is a silencer of survival signals Trends Neurosci 2000 23: 175–180

    CAS  PubMed  Google Scholar 

  6. Leong KG, Karsan A . Signaling pathways mediated by tumor necrosis factor alpha Histol Histopathol 2000 15: 1303–1325

    CAS  PubMed  Google Scholar 

  7. Venters HD, Tang Q, Liu Q, VanHoy RW, Dantzer R, Kelley KW . A new mechanism of neurodegeneration: a proinflammatory cytokine inhibits receptor signaling by a survival peptide Proc Natl Acad Sci USA 1999 96: 9879–9884

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Basile JR, Zacny V, Munger K . The cytokines TNF-alpha and TRAIL differentially modulate proliferation and apoptotic pathways in human keratinocytes expressing the HPV-16 E7 oncoprotein J Biol Chem 2001 16: 16

    Google Scholar 

  9. Kulik G, Carson JP, Vomastek T, et al . Tumor necrosis factor alpha induces BID cleavage and bypasses antiapoptotic signals in prostate cancer LNCaP cells Cancer Res 2001 61: 2713–2719

    CAS  PubMed  Google Scholar 

  10. Liu ZG, Hsu H, Goeddel DV, Karin M . Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death Cell 1996 87: 565–576

    CAS  PubMed  Google Scholar 

  11. Sidoti-de Fraisse C, Rincheval V, Risler Y, Mignotte B, Vayssiere JL . TNF-alpha activates at least two apoptotic signaling cascades Oncogene 1998 17: 1639–1651

    CAS  PubMed  Google Scholar 

  12. Beg AA, Baltimore D . An essential role for NF-kappaB in preventing TNF-alpha–induced cell death Science 1996 274: 782–784

    CAS  PubMed  Google Scholar 

  13. Wang CY, Mayo MW, Baldwin AS, Jr . TNF- and cancer therapy–induced apoptosis: potentiation by inhibition of NF-kappaB Science 1996 274: 784–787

    CAS  PubMed  Google Scholar 

  14. Van Antwerp DJ, Martin SJ, Kafri T, Green DR, Verma IM . Suppression of TNF-alpha–induced apoptosis by NF-kappaB Science 1996 274: 787–789

    CAS  PubMed  Google Scholar 

  15. Hsu H, Huang J, Shu HB, Baichwal V, Goeddel DV . TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex Immunity 1996 4: 387–396

    CAS  PubMed  Google Scholar 

  16. Chinnaiyan AM, Tepper CG, Seldin MF, et al . FADD/MORT1 is a common mediator of CD95 (Fas/APO-1) and tumor necrosis factor receptor–induced apoptosis J Biol Chem 1996 271: 4961–4965

    CAS  PubMed  Google Scholar 

  17. Hsu H, Shu HB, Pan MG, Goeddel DV . TRADD–TRAF2 and TRADD–FADD interactions define two distinct TNF receptor 1 signal transduction pathways Cell 1996 84: 299–308

    CAS  PubMed  Google Scholar 

  18. Rothe M, Pan MG, Henzel WJ, Ayres TM, Goeddel DV . The TNFR2–TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins Cell 1995 83: 1243–1252

    CAS  PubMed  Google Scholar 

  19. Roy N, Deveraux QL, Takahashi R, Salvesen GS, Reed JC . The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases EMBO J 1997 16: 6914–6925

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Milligan SA, Nopajaroonsri C . Inhibition of NF-kappa B with proteosome inhibitors enhances apoptosis in human lung adenocarcinoma cells in vitro Anticancer Res 2001 21: 39–44

    CAS  PubMed  Google Scholar 

  21. Batra RK, Guttridge DC, Brenner DA, Dubinett SM, Baldwin AS, Boucher RC . IkappaBalpha gene transfer is cytotoxic to squamous cell lung cancer cells and sensitizes them to tumor necrosis factor-alpha–mediated cell death Am J Respir Cell Mol Biol 1999 21: 238–245

    CAS  PubMed  Google Scholar 

  22. DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M . A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB Nature 1997 388: 548–554

    CAS  PubMed  Google Scholar 

  23. Stancovski I, Baltimore D . NF-kappaB activation: the I kappaB kinase revealed? Cell 1997 91: 299–302

    CAS  PubMed  Google Scholar 

  24. Regnier CH, Song HY, Gao X, Goeddel DV, Cao Z, Rothe M . Identification and characterization of an IkappaB kinase Cell 1997 90: 373–383

    CAS  PubMed  Google Scholar 

  25. Zandi E, Karin M . Bridging the gap: composition, regulation, and physiological function of the IkappaB kinase complex Mol Cell Biol 1999 19: 4547–4551

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Li XH, Fang X, Gaynor RB . Role of IKK(gamma)/NEMO in assembly of the IKK complex J Biol Chem 2000 15: 15

    Google Scholar 

  27. Krappmann D, Hatada EN, Tegethoff S, et al . The I kappa B kinase (IKK) complex is tripartite and contains IKK gamma but not IKAP as a regular component J Biol Chem 2000 275: 29779–29787

    CAS  PubMed  Google Scholar 

  28. Delhase M, Hayakawa M, Chen Y, Karin M . Positive and negative regulation of IkappaB kinase activity through IKKbeta subunit phosphorylation Science 1999 284: 309–313

    CAS  PubMed  Google Scholar 

  29. Hu Y, Baud V, Delhase M, et al . Abnormal morphogenesis but intact IKK activation in mice lacking the IKKalpha subunit of IkappaB kinase Science 1999 284: 316–320

    CAS  PubMed  Google Scholar 

  30. Li Q, Van Antwerp D, Mercurio F, Lee KF, Verma IM . Severe liver degeneration in mice lacking the IkappaB kinase 2 gene Science 1999 284: 321–325

    CAS  PubMed  Google Scholar 

  31. Li ZW, Chu W, Hu Y, et al . The IKKbeta subunit of IkappaB kinase (IKK) is essential for nuclear factor kappaB activation and prevention of apoptosis J Exp Med 1999 189: 1839–1845

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Fisher KJ, Gao GP, Weitzman MD, DeMatteo R, Burda JF, Wilson JM . Transduction with recombinant adeno-associated virus for gene therapy is limited by leading-strand synthesis J Virol 1996 70: 520–532

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim KS, Takeda K, Sethi R, et al . Protection from reoxygenation injury by inhibition of rac1 J Clin Invest 1998 101: 1821–1826

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Sulciner DJ, Irani K, Yu ZX, Ferrans VJ, Goldschmidt-Clermont P, Finkel T . rac1 regulates a cytokine-stimulated, redox-dependent pathway necessary for NF-kappaB activation Mol Cell Biol 1996 16: 7115–7121

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Zandi E, Rothwarf DM, Delhase M, Hayakawa M, Karin M . The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation Cell 1997 91: 243–252

    CAS  PubMed  Google Scholar 

  36. Anderson RD, Haskell RE, Xia H, Roessler BJ, Davidson BL . A simple method for the rapid generation of recombinant adenovirus vectors Gene Ther 2000 7: 1034–1038

    CAS  PubMed  Google Scholar 

  37. Engelhardt JF, Yang Y, Stratford-Perricaudet LD, et al . Direct gene transfer of human CFTR into human bronchial epithelia of xenografts with E1-deleted adenoviruses Nat Genet 1993 4: 27–34

    CAS  PubMed  Google Scholar 

  38. Engelhardt JF, Zepeda M, Cohn JA, Yankaskas JR, Wilson JM . Expression of the cystic fibrosis gene in adult human lung J Clin Invest 1994 93: 737–749

    CAS  PubMed  PubMed Central  Google Scholar 

  39. McDonald RJ, Lukason MJ, Raabe OG, et al . Safety of airway gene transfer with Ad2/CFTR2: aerosol administration in the nonhuman primate Hum Gene Ther 1997 8: 411–422

    CAS  PubMed  Google Scholar 

  40. Zuckerman JB, Robinson CB, McCoy KS, et al . A phase I study of adenovirus-mediated transfer of the human cystic fibrosis transmembrane conductance regulator gene to a lung segment of individuals with cystic fibrosis Hum Gene Ther 1999 10: 2973–2985

    CAS  PubMed  Google Scholar 

  41. Wilson JM, Engelhardt JF, Grossman M, Simon RH, Yang Y . Gene therapy of cystic fibrosis lung disease using E1 deleted adenoviruses: a phase I trial Hum Gene Ther 1994 5: 501–519

    CAS  PubMed  Google Scholar 

  42. Yang Y, Nunes FA, Berencsi K, Gonczol E, Engelhardt JF, Wilson JM . Inactivation of E2a in recombinant adenoviruses improves the prospect for gene therapy in cystic fibrosis Nat Genet 1994 7: 362–369

    CAS  PubMed  Google Scholar 

  43. Grubb BR, Pickles RJ, Ye H, et al . Inefficient gene transfer by adenovirus vector to cystic fibrosis airway epithelia of mice and humans Nature 1994 371: 802–806

    CAS  PubMed  Google Scholar 

  44. Kaner RJ, Worgall S, Leopold PL, et al . Modification of the genetic program of human alveolar macrophages by adenovirus vectors in vitro is feasible but inefficient, limited in part by the low level of expression of the coxsackie/adenovirus receptor Am J Respir Cell Mol Biol 1999 20: 361–370

    CAS  PubMed  Google Scholar 

  45. Ting AT, Pimentel-Muinos FX, Seed B . RIP mediates tumor necrosis factor receptor 1 activation of NF-kappaB but not Fas/APO-1–initiated apoptosis EMBO J 1996 15: 6189–6196

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Teramoto S, Matsuse T, Matsui H, Ohga E, Ishii T, Ouchi Y . Recombinant E1-deleted adenovirus vector induces apoptosis in two lung cancer cell lines Eur Respir J 1999 13: 1125–1132

    CAS  PubMed  Google Scholar 

  47. Deshpande SS, Angkeow P, Huang J, Ozaki M, Irani K . Rac1 inhibits TNF-alpha–induced endothelial cell apoptosis: dual regulation by reactive oxygen species FASEB J 2000 14: 1705–1714

    CAS  PubMed  Google Scholar 

  48. Dong JY, Wang D, Van Ginkel FW, Pascual DW, Frizzell RA . Systematic analysis of repeated gene delivery into animal lungs with a recombinant adenovirus vector Hum Gene Ther 1996 7: 319–331

    CAS  PubMed  Google Scholar 

  49. Engelhardt JF, Litzky L, Wilson JM . Prolonged transgene expression in cotton rat lung with recombinant adenoviruses defective in E2a Hum Gene Ther 1994 5: 1217–1229

    CAS  PubMed  Google Scholar 

  50. Bergelson JM, Cunningham JA, Droguett G, et al . Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5 Science 1997 275: 1320–1323

    CAS  PubMed  Google Scholar 

  51. Tomko RP, Xu R, Philipson L . HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses Proc Natl Acad Sci USA 1997 94: 3352–3356

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Pickles RJ, McCarty D, Matsui H, Hart PJ, Randell SH, Boucher RC . Limited entry of adenovirus vectors into well-differentiated airway epithelium is responsible for inefficient gene transfer J Virol 1998 72: 6014–6023

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Walters RW, Grunst T, Bergelson JM, Finberg RW, Welsh MJ, Zabner J . Basolateral localization of fiber receptors limits adenovirus infection from the apical surface of airway epithelia J Biol Chem 1999 274: 10219–10226

    CAS  PubMed  Google Scholar 

  54. Zabner J, Freimuth P, Puga A, Fabrega A, Welsh MJ . Lack of high affinity fiber receptor activity explains the resistance of ciliated airway epithelia to adenovirus infection J Clin Invest 1997 100: 1144–1149

    CAS  PubMed  PubMed Central  Google Scholar 

  55. You Z, Fischer DC, Tong X, Hasenburg A, Aguilar-Cordova E, Kieback DG . Coxsackievirus–adenovirus receptor expression in ovarian cancer cell lines is associated with increased adenovirus transduction efficiency and transgene expression Cancer Gene Ther 2001 8: 168–175

    CAS  PubMed  Google Scholar 

  56. Zhao X, Bausano B, Pike BR, et al . TNF-alpha stimulates caspase-3 activation and apoptotic cell death in primary septo-hippocampal cultures J Neurosci Res 2001 64: 121–131

    CAS  PubMed  Google Scholar 

  57. Matthews JR, Hay RT . Regulation of the DNA binding activity of NF-kappa B Int J Biochem Cell Biol 1995 27: 865–879

    CAS  PubMed  Google Scholar 

  58. Naumann M, Scheidereit C . Activation of NF-kappa B in vivo is regulated by multiple phosphorylations EMBO J 1994 13: 4597–4607

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Bird TA, Schooley K, Dower SK, Hagen H, Virca GD . Activation of nuclear transcription factor NF-kappaB by interleukin-1 is accompanied by casein kinase II–mediated phosphorylation of the p65 subunit J Biol Chem 1997 272: 32606–32612

    CAS  PubMed  Google Scholar 

  60. Carter AB, Knudtson KL, Monick MM, Hunninghake GW . The p38 mitogen-activated protein kinase is required for NF-kappaB–dependent gene expression. The role of TATA-binding protein (TBP) J Biol Chem 1999 274: 30858–30863

    CAS  PubMed  Google Scholar 

  61. Kerr LD, Ransone LJ, Wamsley P, et al . Association between proto-oncoprotein Rel and TATA-binding protein mediates transcriptional activation by NF-kappa B Nature 1993 365: 412–419

    CAS  PubMed  Google Scholar 

  62. Jefferies CA, O'Neill LA . Rac1 regulates interleukin 1–induced nuclear factor kappaB activation in an inhibitory protein kappaBalpha-independent manner by enhancing the ability of the p65 subunit to transactivate gene expression J Biol Chem 2000 275: 3114–3120

    CAS  PubMed  Google Scholar 

  63. Dmitriev I, Krasnykh V, Miller CR, et al . An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism J Virol 1998 72: 9706–9713

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Cripe TP, Dunphy EJ, Holub AD, et al . Fiber knob modifications overcome low, heterogeneous expression of the coxsackievirus–adenovirus receptor that limits adenovirus gene transfer and oncolysis for human rhabdomyosarcoma cells Cancer Res 2001 61: 2953–2960

    CAS  PubMed  Google Scholar 

  65. Miller CR, Buchsbaum DJ, Reynolds PN, et al . Differential susceptibility of primary and established human glioma cells to adenovirus infection: targeting via the epidermal growth factor receptor achieves fiber receptor-independent gene transfer Cancer Res 1998 58: 5738–5748

    CAS  PubMed  Google Scholar 

  66. Grill J, Van Beusechem VW, Van Der Valk P, et al . Combined targeting of adenoviruses to integrins and epidermal growth factor receptors increases gene transfer into primary glioma cells and spheroids Clin Cancer Res 2001 7: 641–650

    CAS  PubMed  Google Scholar 

  67. Goldman CK, Rogers BE, Douglas JT, et al . Targeted gene delivery to Kaposi's sarcoma cells via the fibroblast growth factor receptor Cancer Res 1997 57: 1447–1451

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank to Guoshun Wang and Paul B. McCray for the construction of Ad.NFκBLuc vector. Special thanks go to Ebrahim Zandi for providing us with IKKαKM and IKKβKA cDNA. This work was supported by the Center for Gene Therapy of Cystic Fibrosis and other Genetic Diseases cofunded by the National Institute of Health (P30 DK54759) and Cystic Fibrosis Foundation, and VA Merit Review Grant; NIH Grants ES-09607 and HL-60316 to G. W. Hunninghake.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salih Sanlioglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanlioglu, S., Luleci, G. & Thomas, K. Simultaneous inhibition of Rac1 and IKK pathways sensitizes lung cancer cells to TNFα-mediated apoptosis. Cancer Gene Ther 8, 897–905 (2001). https://doi.org/10.1038/sj.cgt.7700394

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700394

Keywords

This article is cited by

Search

Quick links