Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Ex vivo purging by adenoviral p53 gene therapy does not affect NOD-SCID repopulating activity of human CD34+ cells

Abstract

Co-incubation of a replication-deficient, recombinant adenovirus carrying the wild-type p53 gene (rAd-p53) and hematopoietic stem cell (HSC) products from patients with breast cancer can significantly reduce tumor cell contamination. Whereas this approach provides a powerful tumor cell purging strategy, potential detrimental effects on the HSC population have not been investigated. The ability of human HSC to reconstitute hematopoiesis in severe combined immunodeficient (SCID) mice and to undergo secondary transplantation provides the only nonclinical measure of self-renewing, stem cell function. The objective of this study was to investigate whether co-incubation with rAd-p53 compromised the SCID repopulating activity (SRA) of HSC. Granulocyte colony-stimulating factor–mobilized human CD34+ cells were co-cultured with rAd-p53 at our targeted clinical dose, and the ability of these cells to establish multilineage hematopoiesis in sublethally irradiated, nonobese diabetic (NOD)-SCID mice was investigated. The persistence of human cells in the mice was investigated by flow cytometry, granulocyte–macrophage colony-forming unit assay, and polymerase chain reaction of human Alu sequences. Further, limiting dilution analysis provided a quantitative comparison between the SRA of CD34+ cells co-incubated with rAd-p53 and control CD34+ cells (no rAd-p53 co-incubation). We conclude that co-incubation with rAd-p53 has little effect on the SRA of HSC. Cancer Gene Therapy (2001) 8, 936–947

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Antman KH . Randomized trials of high dose chemotherapy for breast cancer Biochim Biophys Acta 2001 1471: M89–M98

    CAS  PubMed  Google Scholar 

  2. Siena S, Bregni M, Brando B, Ravagnani F, Bonadonna G, Gianni AM . Circulation of CD34+ hematopoietic stem cells in the peripheral blood of high-dose cyclophosphamide-treated patients: Enhancement by intravenous recombinant human granulocyte–macrophage colony-stimulating factor Blood 1989 74: 1905–1914

    Article  CAS  PubMed  Google Scholar 

  3. Haas R, Ho AD, Bredthauer U, et al . Successful autologous transplantation of blood stem cells mobilized with recombinant human granulocyte–macrophage colony-stimulating factor Exp Hematol 1990 18: 94–98

    CAS  PubMed  Google Scholar 

  4. Mohle R, Haas R, Hunstein W . Expression of adhesion molecules and c-kit on CD34+ hematopoietic progenitor cells: Comparison of cytokine-mobilized blood stem cells with normal bone marrow and peripheral blood J Hematother 1993 2: 483–489

    Article  CAS  PubMed  Google Scholar 

  5. Socinski MA, Elias A, Schnipper L, Cannistra SA, Antman KH, Griffin JD . Granulocyte–macrophage colony-stimulating factor expands the circulating haemopoietic progenitor cell compartment in man Lancet 1988 1: 1194–1198

    Article  CAS  PubMed  Google Scholar 

  6. Vannucchi AM, Bosi A, Glinz S, et al . Evaluation of breast tumour cell contamination in the bone marrow and leukapheresis collections by RT-PCR for cytokeratin-19 mRNA Br J Haematol 1998 103: 610–617

    Article  CAS  PubMed  Google Scholar 

  7. Franklin WA, Glaspy J, Pflaumer SM, et al . Incidence of tumor cell contamination in leukapheresis products of breast cancer patients mobilized with stem cell factor and granulocyte colony-stimulating factor (G-CSF) or with G-CSF alone Blood 1999 94: 340–347

    Article  CAS  PubMed  Google Scholar 

  8. Stadtmauer EA, Tsai DE, Sickles CJ, et al . Stem cell transplantation for metastatic breast cancer: Analysis of tumor contamination Med Oncol 1999 16: 279–288

    Article  CAS  PubMed  Google Scholar 

  9. Braun S, Pantel K, Muller P, et al . Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer N Engl J Med 2000 342: 525–533

    Article  CAS  PubMed  Google Scholar 

  10. Brenner MK, Rill DR, Moen RC, et al . Gene-marking to trace origin of relapse after autologous bone marrow transplantation Lancet 1993 341: 85–86

    Article  CAS  PubMed  Google Scholar 

  11. Schiller G, Vescio R, Freytes C, et al . Transplantation of CD34+ peripheral blood progenitor cells after high-dose chemotherapy for patients with advanced multiple myeloma Blood 1995 86: 390–397

    Article  CAS  PubMed  Google Scholar 

  12. Gribben JG, Saporito L, Barber M, et al . Bone marrows of non-Hodgkin's lymphoma patients with a bcl-2 translocation can be purged of polymerase chain reaction-detectable lymphoma cells using monoclonal antibodies and immunomagnetic bead depletion Blood 1992 80: 1083–1089

    Article  CAS  PubMed  Google Scholar 

  13. Marini FC, Snell V, Yu Q, et al . Purging of contaminating breast cancer cells from hematopoietic stem cell grafts by adenoviral GAL-TEK gene therapy and magnetic antibody cell separation Clin Cancer Res 1999 5: 1557–1568

    CAS  PubMed  Google Scholar 

  14. Wolff G, Korner IJ, Schumacher A, Arnold W, Dorken B, Mapara MY . Ex vivo breast cancer cell purging by adenovirus-mediated cytosine deaminase gene transfer and short-term incubation with 5-fluorocytosine completely prevents tumor growth after transplantation Hum Gene Ther 1998 9: 2277–2284

    Article  CAS  PubMed  Google Scholar 

  15. Gonzalez R, Vereecque R, Wickham TJ, et al . Transduction of bone marrow cells by the AdZ.F(pK7)-modified adenovirus demonstrates preferential gene transfer in myeloma cells Hum Gene Ther 1999 10: 2709–2717

    Article  CAS  PubMed  Google Scholar 

  16. Yanovich S, Mitsky P, Cornetta K, et al . Transplantation of CD34+ peripheral blood cells selected using fully automated immunomagnetic system in patients with high-risk breast cancer: Results of a prospective randomized multicenter clinical trial Bone Marrow Transplant 2000 25: 1165–1174

    Article  CAS  PubMed  Google Scholar 

  17. Hirai M, Kelsey L, Maneval DC, Vaillancourt MT, Talmadge JE . Adenovirus p53 purging for human breast cancer stem cell products Acta Haematol 1999 101: 97–105

    Article  CAS  PubMed  Google Scholar 

  18. Hirai M, Kelsey LS, Vaillancourt M, Maneval DC, Watanabe T, Talmadge JE . Purging of human breast cancer cells from stem cell products with an adenovirus containing p53 Cancer Gene Ther 2000 7: 197–206

    Article  CAS  PubMed  Google Scholar 

  19. Wroblewski JM, Lay LT, Meeker TC . Adenoviral vectors in hematology: Purging, stem cell gene transfer, or both Blood 1997 89: 4664–4665

    Article  CAS  PubMed  Google Scholar 

  20. Wroblewski JM, Lay LT, Van Zant G, et al . Selective elimination (purging) of contaminating malignant cells from hematopoietic stem cell autografts using recombinant adenovirus Cancer Gene Ther 1996 3: 257–264

    CAS  PubMed  Google Scholar 

  21. Teoh G, Chen L, Urashima M, et al . Adenovirus vector–based purging of multiple myeloma cells Blood 2001 92: 4591–4601

    Article  Google Scholar 

  22. Chen L, Pulsipher M, Chen D, et al . Selective transgene expression for detection and elimination of contaminating carcinoma cells in hematopoietic stem cell sources J Clin Invest 1996 98: 2539–2548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Seth P, Brinkmann U, Schwartz GN, et al . Adenovirus-mediated gene transfer to human breast tumor cells: An approach for cancer gene therapy and bone marrow purging Cancer Res 1996 56: 1346–1351

    CAS  PubMed  Google Scholar 

  24. Garcia-Sanchez F, Pizzorno G, Fu SQ, et al . Cytosine deaminase adenoviral vector and 5-fluorocytosine selectively reduce breast cancer cells 1 million–fold when they contaminate hematopoietic cells: A potential purging method for autologous transplantation Blood 1998 92: 672–682

    Article  CAS  PubMed  Google Scholar 

  25. Cornetta K, Yanovich S, Rosenfeld C, et al . High-dose chemotherapy and stem cell transplant in breast cancer: a randomized multicenter study of CD34 selection. ASBMT Meeting 2000

  26. Ozbun MA, Butel JS . Tumor suppressor p53 mutations and breast cancer: A critical analysis Adv Cancer Res 1995 66: 71–141

    Article  CAS  PubMed  Google Scholar 

  27. Watanabe T, Kelsey LS, Ageitos AG, et al . Enhancement of adenovirus-mediated gene transfer to human bone marrow cells Leuk Lymphoma 1998 29: 439–451

    Article  CAS  PubMed  Google Scholar 

  28. Watanabe T, Kuszynski C, Ino K, et al . Gene transfer into human bone marrow hematopoietic cells mediated by adenovirus vectors Blood 1996 87: 5032–5039

    Article  CAS  PubMed  Google Scholar 

  29. Larochelle A, Vormoor J, Hanenberg H, et al . Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: Implications for gene therapy Nat Med 1996 2: 1329–1337

    Article  CAS  PubMed  Google Scholar 

  30. Hogan CJ, Shpall EJ, McNulty O, et al . Engraftment and development of human CD34(+)-enriched cells from umbilical cord blood in NOD/LtSz scid/scid mice Blood 1997 90: 85–96

    Article  CAS  PubMed  Google Scholar 

  31. Greiner DL, Shultz LD, Yates J, et al . Improved engraftment of human spleen cells in NOD/LtSz scid/scid mice as compared with C.B-17 scid/scid mice Am J Pathol 1995 146: 888–902

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ailles LE, Gerhard B, Kawagoe H, Hogge DE . Growth characteristics of acute myelogenous leukemia progenitors that initiate malignant hematopoiesis in nonobese diabetic/severe combined immunodeficient mice Blood 1999 94: 1761–1772

    Article  CAS  PubMed  Google Scholar 

  33. Wills KN, Maneval DC, Menzel P, et al . Development and characterization of recombinant adenovirus encoding human p53 for gene therapy of cancer Hum Gene Ther 1994 5: 1079–1088

    Article  CAS  PubMed  Google Scholar 

  34. Nyberg-Hoffman C, Shabram P, Li W, Giroux D, Aguilar-Cordova E . Sensitivity and reproducibility in adenoviral infectious titer determination Nat Med 1997 3: 808–811

    Article  CAS  PubMed  Google Scholar 

  35. Guidance for human somatic cell therapy and gene therapy. March 1998. Center for Biologics Evaluation and Research, Food and Drug Administration Hum Gene Ther 1998 9: 1513–1524

  36. Watanabe T, Dave B, Heimann DG, Lethaby E, Kessinger A, Talmadge JE . GM-CSF–mobilized peripheral blood CD34+ cells differ from steady-state bone marrow CD34+ cells in adhesion molecule expression Bone Marrow Transplant 1997 19: 1175–1181

    Article  CAS  PubMed  Google Scholar 

  37. Fazekas dSG . The evaluation of limiting dilution assays JImmunol Methods 1982 49: R11–R23

    Article  Google Scholar 

  38. Ploemacher RE . Cobblestone area forming cells (cafc) assay In: Freshney R, Pragnell I, Freshney M, eds Culture of Hematopoietic Cells New York: Wiley-Liss 1994 1–21

    Google Scholar 

  39. Gibson UE, Heid CA, Williams PM . A novel method for real time quantitative RT-PCR Genome Res 1996 6: 995–1001

    Article  CAS  PubMed  Google Scholar 

  40. Heid CA, Stevens J, Livak KJ, Williams PM . Real time quantitative PCR Genome Res 1996 6: 986–994

    Article  CAS  PubMed  Google Scholar 

  41. Ploemacher RE, van der Sluijs JP, Voerman JS, Brons NH . An in vitro limiting dilution assay of long-term repopulating hematopoietic stem cells in the mouse Blood 1989 74: 2755–2763

    Article  CAS  PubMed  Google Scholar 

  42. Seiden MV, Anderson KC . Stem cell purging ex vivo J Infusional Chemother 1996 6: 17–22

    CAS  Google Scholar 

  43. Rummel SA, Van Zant G . Future paradigm for autologous bone marrow transplantation: tumor purging and ex vivo production of normal stem and progenitor cells J Hematother 1994 3: 213–218

    Article  CAS  PubMed  Google Scholar 

  44. Cagnoni PJ, Jones RB, Bearman SI, et al . Use of amifostine in bone marrow purging Semin Oncol 1996 23: 44–48

    CAS  PubMed  Google Scholar 

  45. Spyridonidis A, Schmidt M, Bernhardt W, et al . Purging of mammary carcinoma cells during ex vivo culture of CD34+ hematopoietic progenitor cells with recombinant immunotoxins Blood 1998 91: 1820–1827

    Article  CAS  PubMed  Google Scholar 

  46. Bertolini F, Thomas T, Battaglia M, Gibelli N, Pedrazzoli P, Robustelli della CG . A new “two step” procedure for 4.5 log depletion of T and B cells in allogeneic transplantation and of neoplastic cells in autologous transplantation Bone Marrow Transplant 1997 19: 615–619

    Article  CAS  PubMed  Google Scholar 

  47. Hildebrandt M, Mapara MY, Korner IJ, Bargou RC, Moldenhauer G, Dorken B . Reverse transcriptase polymerase chain reaction (RT-PCR)–controlled immunomagnetic purging of breast cancer cells using the magnetic cell separation (MACS) system: A sensitive method for monitoring purging efficiency Exp Hematol 1997 25: 57–65

    CAS  PubMed  Google Scholar 

  48. Nachbaur D, Fink FM, Nussbaumer W, et al . CD34+-selected autologous peripheral blood stem cell transplantation (PBSCT) in patients with poor-risk hematological malignancies and solid tumors. A single-centre experience Bone Marrow Transplant 1997 20: 827–834

    Article  CAS  PubMed  Google Scholar 

  49. Roots-Weiss A, Papadimitriou C, Serve H, et al . The efficiency of tumor cell purging using immunomagnetic CD34+ cell separation systems Bone Marrow Transplant 1997 19: 1239–1246

    Article  CAS  PubMed  Google Scholar 

  50. Kruger W, Gruber M, Hennings S, et al . Purging and haemopoietic progenitor cell selection by CD34+ cell separation Bone Marrow Transplant 1998 21: 665–671

    Article  CAS  PubMed  Google Scholar 

  51. Bachier CR, Giles RE, Ellerson D, et al . Hematopoietic retroviral gene marking in patients with follicular non-Hodgkin's lymphoma Leuk Lymphoma 1999 32: 279–288

    Article  CAS  PubMed  Google Scholar 

  52. Mapara MY, Korner IJ, Lentzsch S, Krahl D, Reichardt P, Dorken B . Combined positive/negative purging and transplantation of peripheral blood progenitor cell autografts in breast cancer patients: A pilot study Exp Hematol 1999 27: 169–175

    Article  CAS  PubMed  Google Scholar 

  53. Mohr M, Hilgenfeld E, Fietz T, et al . Efficacy and safety of simultaneous immunomagnetic CD34+ cell selection and breast cancer cell purging in peripheral blood progenitor cell samples used for hematopoietic rescue after high-dose therapy Clin Cancer Res 1999 5: 1035–1040

    CAS  PubMed  Google Scholar 

  54. Thunberg U, Banghagen M, Bengtsson M, et al . Linear reduction of clonal cells in stem cell enriched grafts in transplanted multiple myeloma Br J Haematol 1999 104: 546–552

    Article  CAS  PubMed  Google Scholar 

  55. Fujiwara T, Grimm EA, Mukhopadhyay T, Zhang WW, Owen Schaub LB, Roth JA . Induction of chemosensitivity in human lung cancer cells in vivo by adenovirus-mediated transfer of the wild-type p53 gene Cancer Res 1994 54: 2287–2291

    CAS  PubMed  Google Scholar 

  56. Katayose D, Gudas J, Nguyen H, Srivastava S, Cowan KH, Seth P . Cytotoxic effects of adenovirus-mediated wild-type p53 protein expression in normal and tumor mammary epithelial cells Clin Cancer Res 1995 1: 889–897

    CAS  PubMed  Google Scholar 

  57. Harris MP, Sutjipto S, Wills KN, et al . Adenovirus-mediated p53 gene transfer inhibits growth of human tumor cells expressing mutant p53 protein Cancer Gene Ther 1996 3: 121–130

    CAS  PubMed  Google Scholar 

  58. van der Loo JC, Hanenberg H, Cooper RJ, Luo FY, Lazaridis EN, Williams DA . Nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mouse as a model system to study the engraftment and mobilization of human peripheral blood stem cells Blood 1998 92: 2556–2570

    Article  CAS  PubMed  Google Scholar 

  59. Wang JC, Doedens M, Dick JE . Primitive human hematopoietic cells are enriched in cord blood compared with adult bone marrow or mobilized peripheral blood as measured by the quantitative in vivo SCID-repopulating cell assay Blood 1997 89: 3919–3924

    Article  CAS  PubMed  Google Scholar 

  60. Bhatia M, Wang JC, Kapp U, Bonnet D, Dick JE . Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice Proc Natl Acad Sci USA 1997 94: 5320–5325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Woods NB, Fahlman C, Mikkola H, et al . Lentiviral gene transfer into primary and secondary NOD/SCID repopulating cells Blood 2000 96: 3725–3733

    Article  CAS  PubMed  Google Scholar 

  62. Blagosklonny MV, el Deiry WS . In vitro evaluation of a p53-expressing adenovirus as an anticancer drug Int J Cancer 1996 67: 386–392

    Article  CAS  PubMed  Google Scholar 

  63. Seth P, Rosenfeld M, Higginbotham J, Crystal RG . Mechanism of enhancement of DNA expression consequent to cointernalization of a replication-deficient adenovirus and unmodified plasmid DNA J Virol 1994 68: 933–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Carow CE, Harrington MA, Broxmeyer HE . Detection of human myeloid progenitor cells in a murine background Exp Hematol 1993 21: 66–69

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the assistance of Lisa Chudomelka, Tina Winekauf, and Richard Murcek for their assistance in the preparation of this manuscript. This study was supported, in part, by research funding from Canji to J. E. T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Talmadge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirai, M., LaFace, D., Robinson, S. et al. Ex vivo purging by adenoviral p53 gene therapy does not affect NOD-SCID repopulating activity of human CD34+ cells. Cancer Gene Ther 8, 936–947 (2001). https://doi.org/10.1038/sj.cgt.7700390

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700390

Keywords

This article is cited by

Search

Quick links