Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Replicating adenoviral vector–mediated transfer of a heat-inducible double suicide gene for gene therapy

Abstract

Tumor cells that express a fusion gene of Escherichia coli cytosine deaminase (CD) and herpes simplex virus type 1 thymidine kinase (TK) sequences activate and are subsequently killed by the nontoxic prodrugs 5-fluorocytosine and ganciclovir. We have previously developed a recombinant adenovirus containing the CD-TK fusion gene controlled by the human inducible heat shock protein 70 promoter so that heat at 41°C for 1 hour induces therapeutic gene expression. This adenovirus effectively transduces heat-inducible expression of the CD-TK gene into human prostate carcinoma cells. However, because a limited number of cells in a tumor can actually be infected, we created a replicating adenoviral vector to increase CD-TK gene expression. This vector is a replication-competent, E1B-attenuated adenoviral vector containing the hsp70 promoter–driven CD-TK gene (Ad.E1A(+)HS-CDTK). When human prostate adenocarcinoma DU-145 cells (mutant p53) were infected with the virus at a multiplicity of infection (MOI) of 1 or 10, the viral replication was detected within 2 days at both MOIs. Similar results were observed in human colorectal carcinoma CX-1 cells. When DU-145 cells were infected with the virus at an MOI of 10, incubated for 24 hours, heated at 41°C for 4 hours, and then harvested 20 hours later, Western blot analysis demonstrated that this virus successfully produced viral E1A proteins and heat shock stimulated the CD-TK gene expression by 12.3-fold. In addition, Ad.E1A(+)HS-CDTK effectively suppressed cell proliferation by viral cytopathic effect). Unlike with a replication-incompetent virus (Ad.HS-CDTK), the cytopathic effect of the virus and cytotoxicity in the presence of the prodrugs were still observed even at low MOI (MOI=1.0). Cancer Gene Therapy (2001) 8, 397–404

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Verma IM, Somia M . Gene therapy: promises, problems and prospects Nature 1997 389: 239–242

    Article  CAS  PubMed  Google Scholar 

  2. Sciandra JJ, Subjeck JR, Hughes CS . Induction of glucose-regulated proteins during anaerobic exposure and of heat shock proteins after reoxygenation Proc Natl Acad Sci USA 1984 81: 4843–4847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Whelan SA, Hightower LE . Differential induction of glucose-regulated and heat shock proteins: effects of pH and sulfhydryl-reducing agents on chicken embryo cells J Cell Physiol 1985 125: 251–258

    Article  CAS  PubMed  Google Scholar 

  4. Roll DE, Murphy BJ, Laderoute KR, et al . Oxygen regulated 80 kDa protein and glucose regulated 78 kDa protein are identical Mol Cell Biochem 1991 103: 141–148

    Article  CAS  PubMed  Google Scholar 

  5. Murphy BJ, Laderoute KR, Short SM, et al . The identification of heme oxygenase as a major hypoxic stress protein in Chinese hamster ovary cells Br J Cancer 1991 64: 69–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Butler AJ, Eagleton MJ, Wang D, et al . Induction of the proliferative phenotype in differentiated myogenic cells by hypoxia J Biol Chem 1991 266: 18250–18258

    CAS  PubMed  Google Scholar 

  7. Subjeck JR, Shyy T-T . Stress protein systems of mammalian cells Am J Physiol 1986 250: C1–C17

    Article  CAS  PubMed  Google Scholar 

  8. Goldberg MA, Dunning SP, Bunn HF . Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein Science 1988 243: 1412–1415

    Article  Google Scholar 

  9. Goldberg MA, Schneider TJ . Similarities between the oxygen-sensing mechanisms regulating the expression of vascular endothelial growth factor and erythropoietin J Biol Chem 1994 269: 4355–4359

    CAS  PubMed  Google Scholar 

  10. Galoforo SS, Berns CM, Erdos G, et al . Hypoglycemia-induced AP-1 transcription factor and basic fibroblast growth factor gene expression in multidrug resistant human breast carcinoma MCF-7/ADR cells Mol Cell Biochem 1996 155: 163–171

    Article  CAS  PubMed  Google Scholar 

  11. Weichselbaum RR, Hallahan DE, Sukhatme V, et al . Biological consequences of gene regulation following ionizing radiation J Natl Cancer Inst 1991 83: 480–484

    Article  CAS  PubMed  Google Scholar 

  12. Hallahan DE, Guis D, Kuchibhotla J, et al . Radiation signaling mediated by Jun activation following dissociation from a cell-type specific repressor J Biol Chem 1992 268: 4903–4907

    Google Scholar 

  13. Datta R, Rubin E, Sukhatme V, et al . Ionizing radiation activates transcription of the Egr-1 gene via CArG elements Proc Natl Acad Sci USA 1992 89: 10149–10153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brach MA, Hass R, Sherman ML, et al . Ionizing radiation induces expression and binding activity of the nuclear factor kappa B J Clin Invest 1991 88: 691–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hollander MC, Alamo I, Jackman J, et al . Analysis of the mammalian gadd45 gene and its response to DNA damage J Biol Chem 1993 268: 24385–24393

    CAS  PubMed  Google Scholar 

  16. Lee YJ, Galoforo SS, Berns CM, et al . Effect of ionizing radiation on AP-1 binding activity and basic fibroblast growth factor gene expression in drug-sensitive human breast carcinoma MCF-7 and multidrug-resistant MCF-7/ADR cells J Biol Chem 1995 270: 28790–28796

    Article  CAS  PubMed  Google Scholar 

  17. Blackburn RV, Galoforo SS, Corry PM, et al . Adenoviral-mediated transfer of a heat-inducible double suicide gene into prostate carcinoma cells Cancer Res 1998 58: 1358–1362

    CAS  PubMed  Google Scholar 

  18. Bischoff JR, Kirn DH, Williams A, et al . An adenovirus mutant that replicates selectively in p53-deficient human tumor cells Science. 1996 274: 373–376

    Article  CAS  PubMed  Google Scholar 

  19. Bookstein RJ . Tumor suppressor genes in prostatic oncogenesis Cell Biochem Suppl 1994 19: 217–223

    CAS  Google Scholar 

  20. Tamboli P, Amin MB, Xu HJ, et al . Immunohistochemical expression of retinoblastoma and p53 tumor suppressor genes in prostatic intraepithelial neoplasia: comparison with prostatic adenocarcinoma and benign prostate Mod Pathol 1998 11: 247–252

    CAS  PubMed  Google Scholar 

  21. Freeman SM, Abboud CN, Whartenby KA, et al . Cancer Res 1993 53: 5274–5283

  22. Fick J, Barker FG, Dazin P, et al . The extent of heterocellular communication mediated by gap junctions is predictive of bystander tumor cytotoxicity in vitro Proc Natl Acad Sci USA 1995 92: 11071–11075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Elshami AA, Saavedra A, Zhang H, et al . Gap junctions play a role in the “bystander effect” of the herpes simplex virus thymidine kinase/ganciclovir system in vitro Gene Ther 1996 3: 85–92

    CAS  PubMed  Google Scholar 

  24. Huber BE, Austin EA, Richards CA, et al . Metabolism of 5-fluorocytosine to 5-fluorouracil in human colorectal tumor cells transduced with the cytosine deaminase gene: significant antitumor effects when only a small percentage of tumor cells express cytosine deaminase Proc Natl Acad Sci USA 1994 91: 8302–8306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Freytag SO, Rogulski KR, Paielli DL, et al . A novel three-pronged approach to kill cancer cells selectively: concomitant viral, double suicide gene, and radiotherapy Hum Gene Ther 1998 9: 1323–1333

    Article  CAS  PubMed  Google Scholar 

  26. Graham FL, Prevec L . Methods for construction of adenovirus vectors Mol Biotechnol 1995 3: 207–220

    Article  CAS  PubMed  Google Scholar 

  27. Rogulski KR, Kim JH, Kim SH, et al . Glioma cells transduced with an Escherichia coli CD/HSV-1 TK fusion gene exhibit enhanced metabolic suicide and radiosensitivity Hum Gene Ther 1997 8: 73–85

    Article  CAS  PubMed  Google Scholar 

  28. Kubota Y, Fujinami K, Uemura H, et al . Retinoblastoma gene mutations in primary human prostate cancer Prostate 1995 27: 314–320

    Article  CAS  PubMed  Google Scholar 

  29. Brooks JD, Bova GS, Isaacs WB . Allelic loss of the retinoblastoma gene in primary human prostatic adenocarcinomas Prostate 1995 26: 35–39

    Article  CAS  PubMed  Google Scholar 

  30. Ittmann MM, Wieczorek R . Alterations of the retinoblastoma gene in clinically localized, stage B prostate adenocarcinomas Hum Pathol 1996 27: 28–34

    Article  CAS  PubMed  Google Scholar 

  31. MacGrogan D, Bookstein R . Tumour suppressor genes in prostate cancer Semin Cancer Biol 1997 8: 11–19

    Article  CAS  PubMed  Google Scholar 

  32. Reddy PS, Idamakanti N, Song JY, et al . Sequence and transcription map analysis of early region-1 pf porcine adenovirus type-3 Virus Res 1998 58: 97–106

    Article  PubMed  Google Scholar 

  33. Kirn D, Heise C, Sampson-Johanees A, et al . Adenovirus E1A mutants that destruction of cancer settles selectively replicated in and cause enhanced destruction of cancer cells in vitro and in nude mouse–human tumor xenograft Cancer Gene Ther 1998 3: 526

    Google Scholar 

  34. Mirchandani D, Zheng J, Miller GJ, et al . Heterogeneity in intratumor distribution of p53 mutations in human prostate cancer Am J Pathol 1995 147: 92–101

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hall AR, Dix BR, O'Carroll SJ, et al . p53-dependent cell death/apoptosis is required for a productive adenovirus infection Nat Med 1998 4: 1068–1071

    Article  CAS  PubMed  Google Scholar 

  36. Goodrum FD, Ornelles DA . p53 status does not determine outcome of E1B 55-kilodalton mutant adenovirus lytic infection J Virol 1998 72: 9479–9490

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Rothmann T, Hengstermann A, Whitaker NJ, et al . Replication of ONYX-015, a potential anticancer adenovirus, is independent of p53 status in tumor cells J Virol 1998 72: 9470–9478

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Vollmer CM, Ribas A, Butterfield LH, et al . p53 selective and nonselective replication of an E1B-deleted adenovirus in hepatocellular carcinoma Cancer Res 1999 59: 4369–4374

    CAS  PubMed  Google Scholar 

  39. Rogulski KR, Freytag SO, Zhang K, et al . In vivo antitumor activity of ONYX-015 is influenced by p53 status and is augmented by radiotherapy Cancer Res 2000 60: 1193–1196

    CAS  PubMed  Google Scholar 

  40. Khuri FR, Nemunaitis J, Ganly I, et al . A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer Nat Med 2000 6: 879–885

    Article  CAS  PubMed  Google Scholar 

  41. Collins PL, Hightower LE . Newcastle disease virus stimulates the cellular accumulation of stress (heat shock) mRNAs and proteins J Virol 1982 44: 703–707

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Moolten FL . Drug sensitivity (“suicide”) genes for selective cancer chemotherapy Cancer Gene Ther 1994 1: 279–287

    CAS  PubMed  Google Scholar 

  43. Deonarain MP, Spooner RA, Epenetos AA . Genetic delivery of enzymes for cancer therapy Gene Ther 1995 2: 235–244

    CAS  PubMed  Google Scholar 

  44. Imler JL . Adenoviral vectors as recombinant viral vaccines Vaccine 1995 13: 1143–1151

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the following grants: NCI CA48000, CA44550, CA42857, CA44704, and Elsa U. Pardee Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heurian Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, Y., Galoforo, S., Battle, P. et al. Replicating adenoviral vector–mediated transfer of a heat-inducible double suicide gene for gene therapy. Cancer Gene Ther 8, 397–404 (2001). https://doi.org/10.1038/sj.cgt.7700310

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700310

Keywords

This article is cited by

Search

Quick links