Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Combination oral antiangiogenic therapy with thalidomide and sulindac inhibits tumour growth in rabbits

This article has been updated

Summary

Neovascularization facilitates tumour growth and metastasis formation. In our laboratory, we attempt to identify clinically available oral efficacious drugs for antiangiogenic activity. Here, we report which non-steroidal anti-inflammatory drugs (NSAIDs) can inhibit corneal neovascularization, induced by basic fibroblast growth factor (bFGF) or vascular endothelial growth factor (VEGF). This antiangiogenic activity may contribute to the known effects of NSAIDs on gastric ulcers, polyps and tumours. We found that sulindac was one of the most potent antiangiogenic NSAIDs, inhibiting bFGF-induced neovascularization by 50% and VEGF-induced neovascularization by 55%. Previously, we reported that thalidomide inhibited growth factor-induced corneal neovascularization. When we combined sulindac with thalidomide, we found a significantly increased inhibition of bFGF- or VEGF-induced corneal neovascularization (by 63% or 74% respectively) compared with either agent alone (P< 0.01). Because of this strong antiangiogenic effect, we tested the oral combination of thalidomide and sulindac for its ability to inhibit the growth of V2 carcinoma in rabbits. Oral treatment of thalidomide or sulindac alone inhibited tumour growth by 55% and 35% respectively. When given together, the growth of the V2 carcinoma was inhibited by 75%. Our results indicated that oral antiangiogenic combination therapy with thalidomide and sulindac may be a useful non-toxic treatment for cancer.

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  • Bossi, P., Viale, G., Lee, A. K. C., Alfano, R. M., Coggi, G. & Bosari, S. (1995). Angiogenesis in colorectal tumors: microvessel quantitation in adenomas and carcinomas with clinicopathological correlations. Cancer Res 55: 5049–5053.

    CAS  PubMed  Google Scholar 

  • Chiu, C., McEntee, M. F. & Whelan, J. (1997). Sulindac causes rapid regression of preexisting tumors in Min/+ mice, independent of prostaglandin biosynthesis. Cancer Res 57: 4267–4273.

    CAS  PubMed  Google Scholar 

  • D’Amato, R. J., Loughnan, M. S., Flynn, E. & Folkman, J. (1994). Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 91: 4082–4085.

    Article  PubMed Central  PubMed  Google Scholar 

  • Duggan, D. E., Hooke, K. F., Risley, E. A., Shen, T. Y. & Van Arman, C. G. (1977). Identification of the biologically active form of sulindac. J Pharm Exp Ther 201: 8–13.

    CAS  Google Scholar 

  • Fine, H. A. (1997). A phase II trial of the antiangiogenic agent thalidomide in patients with recurrent high-grade gliomas (abstract). In Thalidomide: Potential Benefits and Risks, Open Public Scientific Workshop, p. 85. National Institute of Health: Bethesda MD

    Google Scholar 

  • Folkman, J. (1975). Tumor angiogenesis: a possible control point in tumor growth. Ann Intern Med 82: 96–100.

    CAS  Article  PubMed  Google Scholar 

  • Folkman, J. (1989). What is the evidence that tumors are angiogenesis dependent?. J Natl Cancer Inst 82: 4–6.

    Article  Google Scholar 

  • Folkman, J. (1995). Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med 1: 27–31.

    CAS  Article  PubMed  Google Scholar 

  • Folkman, J. (1997). Antiangiogenic therapy. Cancer, Principles and Practice of Oncology, DeVita Jr VT, Hellman S, Rosenberg SA (eds). pp. 3075–3086, Lipincott Raven: New York

    Google Scholar 

  • Folkman, J. & Ingber, D. E. (1987). Angiostatic steroids: method of discovery and mechanism of action. Ann Surg 206: 374–384.

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  • Fulton, A. M. (1984). In vivo effects of indomethacin on the growth of murine mammary tumors. Cancer Res 44: 2419–2420.

    Google Scholar 

  • Giardiello, F. M., Hamilton, S. R., Krush, A. J., Piantodosi, S., Hylind, L. M., Cleano, P., Banker, S. V., Robinson, C. R. & Offerhaus, G. J. (1993). Treatment of colonic rectal adenomas with sulindac in familial adenomatous polyposis. N Engl J Med 328: 1313–1316.

    CAS  Article  PubMed  Google Scholar 

  • Gross, J., Azizkhan, R. G., Biswas, C., Bruns, R. R., Hsieh, D. S. T. & Folkman, J. (1981). Inhibition of tumor growth, vasularization, and collagenolysis in the rabbit cornea by medroxyprogesterone. Proc Natl Acad Sci USA 78: 1176–1180.

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  • Gutman, M., Szold, A., Ravid, A., Lazouskas, T., Merimsky, O. & Klausner, J. M. (1996). Failure of thalidomide to inhibit tumor growth and angiogenesis in vivo. Anticancer Res 16: 3673–3678.

    CAS  PubMed  Google Scholar 

  • Hanif, R., Pittas, A., Feng, Y., Koutsos, M. I., Qiao, L., Staiano-Coico, L., Shiff, S. I. & Rigos, B. (1996). Effects of nonsteroidal anti-inflammatory drugs on proliferation and on induction of apoptosis in colon cancer cells by a prostaglandin-independent pathway. Biochem Pharmacol 52: 237–245.

    CAS  Article  PubMed  Google Scholar 

  • Haynes, W. L., Proia, A. D. & Klintworth, G. K. (1989). Effect of inhibitors of arachidonic acid metabolism on corneal neovascularization in the rat. Invest Ophthalmol Vis Sci 30: 1588–1593.

    CAS  PubMed  Google Scholar 

  • Hudson, N., Balsitis, M., Everitt, S. & Hawkey, C. J. (1995). Angiogenesis in gastric ulcers: impaired in patients taking non-steroidal anti-inflammatory drugs. Gut 37: 191–194.

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  • Insel, P. A. (1996). Analgesic–antipyretic and antiinflammatory agents and drugs employed in the treatment of gout. The Pharmacological Basis of Therapeutics, Hardman JG, Limbird LE (eds). 617–658, The McGraw-Hill Companies: New York

    Google Scholar 

  • Kamei, S., Okada, H., Inoue, Y., Yoshioka, T., Ogawa, Y. & Toguchi, H. (1993). Antitumor effects of angiogenesis inhibitor TNP-470 in rabbits bearing VX-2 carcinoma by arterial administration of microspheres and oil solution. J Pharm Exp Ther 264: 469–474.

    CAS  Google Scholar 

  • Karim, S., Habib, A., Levy-Toledano, S. & Maclouf, J. (1995). Cyclooxygenases-1 and -2 of endothelial cells utilize exogenous or endogenous arachidonic acid for transcellular production of thromboxane. J Biol Chem 271: 12042–12048.

    Article  Google Scholar 

  • Kenyon, B. M., Voest, E. E., Chen, C., Flynn, E., Folkman, J. & D’Amato, R. J. (1996). A model of angiogenesis in the mouse cornea. Invest Ophthalmol Vis Sci 37: 1625–1632.

    CAS  PubMed  Google Scholar 

  • Kenyon, B. M., Browne, F. & D’Amato, R. J. (1997). Effects of thalidomide and related metabolites in a mouse corneal model of neovascularization. Exp Eye Res 64: 971–978.

    CAS  Article  PubMed  Google Scholar 

  • Kidd, J. G. & Rous, P. (1940). A transplantable rabbit carcinoma originating in a virus-induced papilloma and containing the virus in masked or altered form. J Exp Med 71: 813–838.

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  • Labayle, D., Fischer, D., Vielh, P., Drouhin, F., Pariente, A., Bories, C., Duhamel, A., Transset, M. & Attali, P. (1991). Sulindac causes regression of rectal polyps in familial adenomatous polyposis. Gastroenterology 101: 635–639.

    CAS  Article  PubMed  Google Scholar 

  • Little, R., Welles, L., Wyvill, K., Pluda, J., Figg, W., Tosato, G. & Yarchoan, R. (1997). Preliminary results of a phase II dose titration study of oral thalidomide in patients with HIV infection and Kaposi’s sarcoma (abstract). Thalidomide: Potential Benefits and Risks, Open Public Scientific Workshop, 91. National Institute of Health: Bethesda

    Google Scholar 

  • Lynch, N. R., Castes, M., Astoin, M. & Salomon, J. C. (1978). Mechanism of inhibition of tumour growth by aspirin and indomethacin. Br J Cancer 38: 503–512.

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  • Marnett, L. J. (1992). Aspirin and the potential role of prostaglandins in colon cancer. Cancer Res 52: 5575–5589.

    CAS  PubMed  Google Scholar 

  • Meade, E. A., Smith, W. L. & DeWitt, D. L. (1993). Differential inhibition of prostaglandin endoperoxide synthetase (cyclooygenase) isozymes by aspirin and other non-steroidal anti-inflammatory drugs. J Biol Chem 268: 6610–6614.

    CAS  PubMed  Google Scholar 

  • Minchinton, A. I., Fryer, K. H., Wendt, K. R., Clow, K. A. & Hayes, M. M. M. (1996). The effect of thalidomide on experimental tumors and metastases. Anticancer Drugs 7: 339–343.

    CAS  Article  PubMed  Google Scholar 

  • Mitchell, J. A., Akarasereenont, P., Thiemermann, C., Flower, R. J. & Vane, J. R. (1993). Selectivity of nonsteroidal antiinflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase. Proc Natl Acad Sci USA 90: 11693–11697.

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  • Peterson, H. (1996). Tumor angiogenesis inhibition by prostaglandin synthetase inhibitors. Anticancer Res 6: 251–254.

    Google Scholar 

  • Piazza, G. A., Rahm, A. L., Krutzsch, M., Sperl, G., Paranka, N. S., Gross, P. H., Brendel, K., Burt, R. W., Alberts, O. S. & Paniukou, R. (1997). Antineoplastic drugs sulindac sulfide and sulfone inhibit cell growth by inducing apoptosis. Cancer Res 55: 3110–3116.

    Google Scholar 

  • Pliess, G. (1962). Thalidomide and congenital abnormalities. Lancet 2: 1128–1129.

    Article  Google Scholar 

  • Sakamoto, T., Soriano, D., Nassaralla, J., Murphy, T. L., Oganesian, A., Spee, C., Hinton, D. R. & Ryan, S. J. (1995). Effect of intravitreal administration of indomethacin on experimental subretinal neovascularization in the subhuman primate. Arch Ophthamol 113: 222–226.

    CAS  Article  Google Scholar 

  • Schumacher, H., Smith, R. L. & Williams, R. T. (1965). Metabolism of thalidomide: the fate of thalidomide and some of its hydrolysis products in various species. Br J Pharmacol 25: 338–351.

    CAS  Google Scholar 

  • Schumacher, H., Blake, D. A. & Gilette, J. R. (1968). Disposition of thalidomide in rabbits and rats. J Pharm Exp Ther 160: 201–211.

    CAS  Google Scholar 

  • Silverman, K. J., Lund, D. P., Zetter, B. R., Lainey, L. L., Shahood, J. A., Freiman, D. G., Folkman, J. & Burger, A. C. (1988). Angiogenic activity of adipose tissue. Biochem Biophys Res Commun 153: 347–352.

    CAS  Article  PubMed  Google Scholar 

  • Smith, W. L., Meade, E. A. & DeWitt, D. L. (1994). Interactions of PGH synthase isozymes-1 and -2 with NSAIDs. Ann NY Acad Sci 744: 50–57.

    CAS  Article  PubMed  Google Scholar 

  • Szabo, K. T. & Steelman, R. L. (1967). Effects of maternal thalidomide treatment on pregnancy, fetal development, and mortality of the offspring in random-bred mice. Am J Vet Res 28: 1823–1828.

    CAS  PubMed  Google Scholar 

  • Tanaka, H., Sukhova, G. K. & Libby, P. (1994). Interaction of the allogeneic state and hypercholesterolemia in arterial lesion formation in experimental cardiac allografts. Arteriosclerosis Thromb 14: 734–745.

    CAS  Article  Google Scholar 

  • Teicher, B. A., Korbut, T. T., Menon, K., Holden, S. A. & Ara, G. (1994). Cyclooxygenase and lipoxygenase as modulators of cancer therapies. Cancer Chem Pharm 33: 515–522.

    CAS  Article  Google Scholar 

  • Weidner, N., Semple, J. P., Welch, W. R. & Folkman, J. (1991). Tumor angiogenesis and metastasis – correlation in invasive breast carcinoma. N Engl J Med 324: 1–8.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and Permissions

About this article

Cite this article

Verheul, H., Panigrahy, D., Yuan, J. et al. Combination oral antiangiogenic therapy with thalidomide and sulindac inhibits tumour growth in rabbits. Br J Cancer 79, 114–118 (1999). https://doi.org/10.1038/sj.bjc.6690020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bjc.6690020

Keywords

  • basic fibroblast growth factor
  • vascular endothelial growth factor
  • corneal neovascularization
  • non-steroidal anti-inflammatory drug
  • cyclo-oxygenase

Further reading

Search

Quick links