Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genes at human chromosome 5q31.1 regulate delayed-type hypersensitivity responses associated with Leishmania chagasi infection

Abstract

Visceral leishmaniasis (VL) caused by Leishmania chagasi is endemic to northeast Brazil. A positive delayed-type hypersensitivity skin test response (DTH+) is a marker for acquired resistance to disease, clusters in families and may be genetically controlled. Twenty-three single nucleotide polymorphisms (SNPs) were genotyped in the cytokine 5q23.3–q31.1 region IRF1-IL5-IL13-IL4-IL9-LECT2-TGFBI in 102 families (323 DTH+; 190 DTH−; 123 VL individuals) from a VL endemic region in northeast Brazil. Data from 20 SNPs were analyzed for association with DTH+/− status and VL using family-based, stepwise conditional logistic regression analysis. Independent associations were observed between the DTH+ phenotype and markers in separate linkage disequilibrium blocks in LECT2 (OR 2.25; P=0.005; 95% CI=1.28–3.97) and TGFBI (OR 1.94; P=0.003; 95% CI=1.24–3.03). VL child/parent trios gave no evidence of association, but the DTH− phenotype was associated with SNP rs2070874 at IL4 (OR 3.14; P=0.006; 95% CI=1.38–7.14), and SNP rs30740 between LECT2 and TGFBI (OR 3.00; P=0.042; 95% CI=1.04–8.65). These results indicate several genes in the immune response gene cluster at 5q23.3–q31.1 influence outcomes of L. chagasi infection in this region of Brazil.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Wilson ME, Jeronimo SM, Pearson RD . Immunopathogenesis of infection with the visceralizing leishmania species. Microb Pathog 2005; 38: 147–160.

    Google Scholar 

  2. Pearson RD, Sousa AQ . Clinical spectrum of leishmaniasis. Clin Infect Dis 1996; 22: 1–13.

    Google Scholar 

  3. Sundar S, Rosenkaimer F, Murray HW . Successful treatment of refractory visceral leishmaniasis in India using antimony plus interferon-gamma. J Infect Dis 1994; 170: 659–662.

    Google Scholar 

  4. Jeronimo SM, Teixeira MJ, Sousa A, Thielking P, Pearson RD, Evans TG . Natural history of Leishmania (Leishmania) chagasi infection in northeastern Brazil: long-term follow-up. Clin Infect Dis 2000; 30: 608–609.

    Google Scholar 

  5. Costa CH, Stewart JM, Gomes RB, Garcez LM, Ramos PK, Bozza M et al. Asymptomatic human carriers of Leishmania chagasi. Am J Trop Med Hyg 2002; 66: 334–337.

    Google Scholar 

  6. Braz RF, Nascimento ET, Martins DR, Wilson ME, Pearson RD, Reed SG et al. The sensitivity and specificity of Leishmania chagasi recombinant K39 antigen in the diagnosis of American visceral leishmaniasis and in differentiating active from subclinical infection. Am J Trop Med Hyg 2002; 67: 344–348.

    Google Scholar 

  7. Badaro R, Benson D, Eulalio MC, Freire M, Cunha S, Netto EM et al. rK39: a cloned antigen of Leishmania chagasi that predicts active visceral leishmaniasis. J Infect Dis 1996; 173: 758–761.

    Google Scholar 

  8. Zijlstra EE, Daifalla NS, Kager PA, Khalil EA, El-Hassan AM, Reed SG et al. rK39 enzyme-linked immunosorbent assay for diagnosis of Leishmania donovani infection. Clin Diagn Lab Immunol 1998; 5: 717–720.

    Google Scholar 

  9. Harrison LH, Naidu TG, Drew JS, de Alencar JE, Pearson RD . Reciprocal relationships between undernutrition and the parasitic disease visceral leishmaniasis. Rev Infect Dis 1986; 8: 447–453.

    Google Scholar 

  10. El-Safi S, Kheir MM, Bucheton B, Argiro L, Abel L, Dereure J et al. Genes and environment in susceptibility to visceral leishmaniasis. C R Biol 2006; 329: 863–870.

    Google Scholar 

  11. el Tai NO, Osman OF, el Fari M, Presber W, Schonian G . Genetic heterogeneity of ribosomal internal transcribed spacer in clinical samples of Leishmania donovani spotted on filter paper as revealed by single-strand conformation polymorphisms and sequencing. Trans R Soc Trop Med Hyg 2000; 94: 575–579.

    Google Scholar 

  12. Dey A, Singh S . Genetic heterogeneity among visceral and post-Kala-Azar dermal leishmaniasis strains from eastern India. Infect Genet Evol 2007; 7: 219–222.

    Google Scholar 

  13. Bucheton B, Kheir MM, El-Safi SH, Hammad A, Mergani A, Mary C et al. The interplay between environmental and host factors during an outbreak of visceral leishmaniasis in eastern Sudan. Microbes Infect 2002; 4: 1449–1457.

    Google Scholar 

  14. Peacock CS, Collins A, Shaw MA, Silveira F, Costa J, Coste CH et al. Genetic epidemiology of visceral leishmaniasis in northeastern Brazil. Genet Epidemiol 2001; 20: 383–396.

    Google Scholar 

  15. Ibrahim ME, Lambson B, Yousif AO, Deifalla NS, Alnaiem DA, Ismail A et al. Kala-azar in a high transmission focus: an ethnic and geographic dimension. Am J Trop Med Hyg 1999; 61: 941–944.

    Google Scholar 

  16. Bradley DJ . Genetic control of natural resistance to Leishmania donovani. Nature 1974; 250: 353–354.

    Google Scholar 

  17. Leclercq V, Lebastard M, Belkaid Y, Louis J, Milon G . The outcome of the parasitic process initiated by Leishmania infantum in laboratory mice: a tissue-dependent pattern controlled by the Lsh and MHC loci. J Immunol 1996; 157: 4537–4545.

    Google Scholar 

  18. Blackwell J, Freeman J, Bradley D . Influence of H-2 complex on acquired resistance to Leishmania donovani infection in mice. Nature 1980; 283: 72–74.

    Google Scholar 

  19. Bucheton B, Abel L, Kheir MM, Mirgani A, El-Safi SH, Chevillard C et al. Genetic control of visceral leishmaniasis in a Sudanese population: candidate gene testing indicates a linkage to the NRAMP1 region. Genes Immun 2003; 4: 104–109.

    Google Scholar 

  20. Mohamed HS, Ibrahim ME, Miller EN, White JK, Cordell HJ, Howson JMM et al. SLC11A1 (formerly NRAMP1) and susceptibility to visceral leishmaniasis in the Sudan. Eur J Hum Genet 2004; 12: 66–74.

    Google Scholar 

  21. Peacock CS, Sanjeevi CB, Shaw MA, Collins A, Campbell RD, March R et al. Genetic analysis of multicase families of visceral leishmaniasis in northeastern Brazil: no major role for class II or class III regions of HLA. Genes Immun 2002; 3: 350–358.

    Google Scholar 

  22. Amendoiera R, Guilherme L, Martin M, Messias L, Cabello P, Krieger H et al. HLA and visceral leishmaniasis in families of endemic area in northeast Brazil. Mem I Oswaldo Cruz 1988; 83: 119.

    Google Scholar 

  23. Faghiri Z, Tabei SZ, Taheri F . Study of the association of HLA class I antigens with kala-azar. Hum Hered 1995; 45: 258–261.

    Google Scholar 

  24. Meddeb-Garnaoui A, Gritli S, Garbouj S, Ben Fadhel M, El Kares R, Mansour L et al. Association analysis of HLA-class II and class III gene polymorphisms in the susceptibility to Mediterranean visceral leishmaniasis. Hum Immunol 2001; 62: 509–517.

    Google Scholar 

  25. Singh N, Sundar S, Williams F, Curran MD, Rastogi A, Agrawai S et al. Molecular typing of HLA class I and class II antigens in Indian kala-azar patients. Trop Med Int Health 1997; 2: 468–471.

    Google Scholar 

  26. Sundar S, Reed SG, Sharma S, Mehrotra A, Murray HW . Circulating T helper 1 (Th1) cell- and Th2 cell-associated cytokines in Indian patients with visceral leishmaniasis. Am J Trop Med Hyg 1997; 56: 522–525.

    Google Scholar 

  27. Zwingenberger K, Harms G, Pedrosa C, Omena S, Sandkamp B, Neifer S . Determinants of the immune response in visceral leishmaniasis: evidence for predominance of endogenous interleukin 4 over interferon-gamma production. Clin Immunol Immunopathol 1990; 57: 242–249.

    Google Scholar 

  28. Mohamed HS, Ibrahim ME, Miller EN, Peacock CS, Khalil EA, Cordell HJ et al. Genetic susceptibility to visceral leishmaniasis in the Sudan: linkage and association with IL4 and IFNGR1. Genes Immun 2003; 4: 351–355.

    Google Scholar 

  29. Ho M, Siongok TK, Lyerly WH, Smith DH . Prevalence and disease spectrum in a new focus of visceral leishmaniasis in Kenya. Trans R Soc Trop Med Hyg 1982; 76: 741–746.

    Google Scholar 

  30. Cabello PH, Lima AM, Azevedo ES, Kriger H . Familial aggregation of Leishmnaia chagasi infection in northeastern Brazil. Am J Trop Med Hyg 1995; 52: 364–365.

    Google Scholar 

  31. Feitosa MF, Axevedo E, Lima AM, Krieger H . Genetic causes involved in Leishmania chagasi infection in northeastern Brazil. Genet Mol Biol 1999; 22: 1–5.

    Google Scholar 

  32. Jeronimo SM, Duggal P, Braz RF, Cheng C, Monteiro GR, Nascimento ET et al. An emerging peri-urban pattern of infection with Leishmania chagasi, the protozoan causing visceral leishmaniasis in northeast Brazil. Scand J Infect Dis 2004; 36: 443–449.

    Google Scholar 

  33. Karplus TM, Jeronimo SM, Chang H, Helms BK, Burns TL, Murray JC et al. Association between the tumor necrosis factor locus and the clinical outcome of Leishmania chagasi infection. Infect Immun 2002; 70: 6919–6925.

    Google Scholar 

  34. Evans TG, Teixeira MJ, McAuliffe IT, Vasconcelos I, Vasconcelos AW, Sousa Ade A et al. Epidemiology of visceral leishmaniasis in northeast Brazil. J Infect Dis 1992; 166: 1124–1132.

    Google Scholar 

  35. O’Connell JR, Weeks DE . PedCheck: a program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet 1998; 63: 259–266.

    Google Scholar 

  36. Jeronimo SM, Duggal P, Ettinger N, Nascimento ET, Martins DR, Monteiro GR et al. Genetic predisposition to symptomatic versus self-curing infection with the protozoan Leishmania chagasi: a genome wide scan. J Infect Dis 2007, (in press).

  37. Holmans P, Clayton D . Efficiency of typing unaffected relatives in an affected sib-pair linkage study with single locus and multiple tightly-linked markers. Am J Hum Genet 1995; 37: 1221–1232.

    Google Scholar 

  38. Hedrick PW . Gametic disequilibrium measures: proceed with caution. Genetics 1987; 117: 331–341.

    Google Scholar 

  39. Devlin B, Risch N . A comparison of linkage disequilibrium measures for fine-scale mapping. Genomics 1995; 29: 311–322.

    Google Scholar 

  40. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Google Scholar 

  41. Knapp M . A note on power approximations for the transmission/disequilibrium test. Am J Hum Genet 1999; 64: 1177–1185.

    Google Scholar 

  42. Cordell HJ . Properties of case/pseudocontrol analysis for genetic association studies: effects of recombination, ascertainment, and multiple affected offspring. Genet Epidemiol 2004; 26: 186–205.

    Google Scholar 

  43. Cordell HJ, Clayton DG . A unified stepwise regression procedure for evaluating the relative effects of polymorphisms within a gene using case/control or family data: application to HLA in type 1 diabetes. Am J Hum Genet 2002; 70: 124–141.

    Google Scholar 

  44. Gottgens B, Gilbert JG, Barton LM, Grafham D, Rogers J, Bentley DR et al. Long-range comparison of human and mouse SCL loci: localized regions of sensitivity to restriction endonucleases correspond precisely with peaks of conserved noncoding sequences. Genome Res 2001; 11: 87–97.

    Google Scholar 

  45. Marquet S, Laurent A, Hillaire D, Dessein H, Kalil J, Feingold J et al. Genetic localization of a locus controlling the intensity of infection by Schistosoma mansoni on chromosome 5q31–q33. Nat Genet 1996; 14: 181–184.

    Google Scholar 

  46. Kouriba B, Chevillard C, Bream JH, Argiro L, Dessein H, Arnaud V et al. Analysis of the 5q31-q33 locus shows an association between IL13-1055C/T IL-13-591A/G polymorphisms and Schistosoma haematobium infections. J Immunol 2005; 174: 6274–6281.

    Google Scholar 

  47. Launois P, Maillar I, Pingel S, Swihart KG, Xenarios I, Acha-Orbea H et al. IL-4 rapidly produced by Vá4 Và8 CD4+ T cells instructs Th2 development and susceptibility to Leishmania major in BALB/c mice. Immunity 1997; 6: 541–549.

    Google Scholar 

  48. Peruhype-Magalhaes V, Martins-Filho OA, Prata A, Silva Lde A, Rabello A, Teixeira-Carvalho A et al. Immune response in human visceral leishmaniasis: analysis of the correlation between innate immunity cytokine profile and disease outcome. Scand J Immunol 2005; 62: 487–495.

    Google Scholar 

  49. Biedermann T, Zimmermann S, Himmelrich H, Gumy A, Egeter O, Sakrauski AK et al. IL-4 instructs TH1 responses and resistance to Leishmania major in susceptible BALB/c mice. Nat Immunol 2001; 2: 1054–1060.

    Google Scholar 

  50. Mayrink W, da Costa CA, Magalhaes PA, Melo MN, Dias M, Lima AO et al. A field trial of a vaccine against American dermal leishmaniasis. Trans R Soc Trop Med Hyg 1979; 73: 385–387.

    Google Scholar 

  51. Antunes CM, Mayrink W, Magalhaes PA, Costa CA, Melo MN, Dias M et al. Controlled field trials of a vaccine against new world cutaneous leishmaniasis. Int J Epidemiol 1986; 15: 572–580.

    Google Scholar 

  52. Sharifi I, FeKri AR, Aflatonian MR, Khamesipour A, Nadim A, Mousavi MR et al. Randomised vaccine trial of single dose of killed Leishmania major plus BCG against anthroponotic cutaneous leishmaniasis in Bam, Iran. Lancet 1998; 351: 1540–1543.

    Google Scholar 

  53. Momeni AZ, Jalayer T, Emamjomeh M, Khamesipour A, Zicker F, Ghassemi RL et al. A randomised, double-blind, controlled trial of a killed L. major vaccine plus BCG against zoonotic cutaneous leishmaniasis in Iran. Vaccine 1999; 17: 466–472.

    Google Scholar 

  54. Khalil EA, El Hassan AM, Zijlstra EE, Mukhtar MM, Ghalib HW, Musa B et al. Autoclaved Leishmania major vaccine for prevention of visceral leishmaniasis: a randomised, double-blind, BCG-controlled trial in Sudan. Lancet 2000; 356: 1565–1569.

    Google Scholar 

  55. Mayrink W, Schettini AP, Williams P, Raso P, Magalhaes PA, Lima Ade O et al. Histological observations on Montenegro's reaction in man. Rev Inst Med Trop Sao Paulo 1989; 31: 256–261.

    Google Scholar 

  56. Castes M, Blackwell J, Trujillo D, Formica S, Cabrera M, Zorrilla G et al. Immune response in healthy volunteers vaccinated with killed leishmanial promastigotes plus BCG. I: skin-test reactivity, T cell proliferation and interferon-gamma production. Vaccine 1994; 12: 1041–1051.

    Google Scholar 

  57. Black GF, Fine PEM, Warndorff DK, Floyd S, Weir RE, Blackwell JM et al. Relationship between IFN-gamma and skin test responsiveness to Mycobacterium tuberculosis PPD in healthy, non-BCG-vaccinated young adults in Northern Malawi. Int J Tuberc Lung Dis 2001; 5: 664–672.

    Google Scholar 

  58. Weir RE, Fine PE, Nazareth B, Floyd S, Black GF, King E et al. Interferon-gamma and skin test responses of schoolchildren in southeast England to purified protein derivatives from Mycobacterium tuberculosis and other species of mycobacteria. Clin Exp Immunol 2003; 134: 285–294.

    Google Scholar 

  59. Yamagoe S, Mizuno S, Suzuki K . Molecular cloning of human and bovine LECT2 having a neutrophil chemotactic activity and its specific expression in the liver. Biochim Biophys Acta 1998; 1396: 105–113.

    Google Scholar 

  60. Nagai H, Hamada T, Uchida T, Yamagoe S, Suzuki K . Systemic expression of a newly recognized protein, LECT2, in the human body. Pathol Int 1998; 48: 882–886.

    Google Scholar 

  61. Wilson ME, Innes DJ, Sousa AD, Pearson RD . Early histopathology of experimental infection with Leishmania donovani in hamsters. J Parasitol 1987; 73: 55–63.

    Google Scholar 

  62. Yamagoe S, Kameoka Y, Hashimoto K, Mizuno S, Suzuki K . Molecular cloning, structural characterization, and chromosomal mapping of the human LECT2 gene. Genomics 1998; 48: 324–329.

    Google Scholar 

  63. Skokowa J, Cario F, Uenalan M, Schamback A, Germeshausen M, Battmer K et al. LEF-1 is crucial for neutrophil granulocytopoiesis and its expression is severely reduced in congenital neutropenia. Nat Med 2006; 12: 1191–1197.

    Google Scholar 

  64. Joseph SB, Castrillo A, Laffitte BA, Mangellsdorf DJ, Tontonoz P . Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med 2003; 9: 213–219.

    Google Scholar 

  65. Kannabiran C, Klintworth GK . TGFBI gene mutations in corneal dystrophies. Hum Mutat 2006; 27: 615–625.

    Google Scholar 

  66. Skonier J, Bennett K, Rothwell V, Kosowski S, Plowman G, Wallace P et al. Beta ig-h3: a transforming growth factor-beta-responsive gene encoding a secreted protein that inhibits cell attachment in vitro and suppresses the growth of CHO cells in nude mice. DNA Cell Biol 1994; 13: 571–584.

    Google Scholar 

Download references

Acknowledgements

This research was supported by National Institutes of Health grants AI048822 (MEW), AI45540 (MEW), NIH TMRC grant AI30639 (SMBJ), Conselho Nacional de Desenvolvimento Científico e Tecnológico (SMBJ), Merit Review and Gulf War grants from the Department of Veterans’ Affairs (MEW), The Wellcome Trust (JMB and HJC) and in part by the Intramural Research Program of the National Human Genome Research Institute, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M E Wilson.

Additional information

Electronic database information

1) http://www.who.int/tdr/diseases/leish/diseaseinfo.htm

2)www.appliedbiosystems.com

3) http://www.stata.com/

4) http://www-gene.cimr.cam.ac.uk/clayton/software/stata/

5) http://www.hapmap.org/

6) http://www-gene.cimr.cam.ac.uk/clayton/software/

7) http://alggen.lsi.upc.es/cgi-bin/promo_v3/promo/promoinit.cgi?dirDB=TF_8.3

8) http://www.bioinformatik.de/cgi-bin/browse/Catalog/Software/Prediction_of_Prediction_of_Transcription_Factor_Binding_Sites/

9) http://www.genomatix.de/cgi-bin/matinspector/matinspector.pl

Supplementary Information accompanies the paper on Genes and Immunity website (http://www.nature.com/gene)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeronimo, S., Holst, A., Jamieson, S. et al. Genes at human chromosome 5q31.1 regulate delayed-type hypersensitivity responses associated with Leishmania chagasi infection. Genes Immun 8, 539–551 (2007). https://doi.org/10.1038/sj.gene.6364422

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364422

Keywords

This article is cited by

Search

Quick links