Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana

Abstract

The higher plant Arabidopsis thaliana (Arabidopsis) is an important model for identifying plant genes and determining their function. To assist biological investigations and to define chromosome structure, a coordinated effort to sequence the Arabidopsis genome was initiated in late 1996. Here we report one of the first milestones of this project, the sequence of chromosome 4. Analysis of 17.38 megabases of unique sequence, representing about 17% of the genome, reveals 3,744 protein coding genes, 81 transfer RNAs and numerous repeat elements. Heterochromatic regions surrounding the putative centromere, which has not yet been completely sequenced, are characterized by an increased frequency of a variety of repeats, new repeats, reduced recombination, lowered gene density and lowered gene expression. Roughly 60% of the predicted protein-coding genes have been functionally characterized on the basis of their homology to known genes. Many genes encode predicted proteins that are homologous to human and Caenorhabditis elegans proteins.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 2: Functional analysis of genes.
Figure 3: Distribution of multigene families and gene clusters on Arabidopsis chromosomes.
Figure 4: Fluorescent in situ hybridization analysis of sequences in the heterochromatic region.
Figure 5: Distribution of sequence repeats.
Figure 1: Distribution of predicted genes, repeats and transcript levels on sequenced regions of chromosome 4.

Accession codes

Accessions

EMBL/GenBank/DDBJ

Data deposits

The sequence and preliminary analysis of clones and PCR products were made available immediately after completion through the MATDB database12. The results of computational analyses, including the functional and structural characterization of the protein sequences involved, are available at the PEDANT-pro genome analysis server (http://pedant.mips.biochem.mpg.de). Underlying recombinant clones can be obtained from the NASC (http://www.nasc.ac.uk/). The accession numbers for chromosome 4 are: short arm, AJ270058; long arm, AJ270060.

References

  1. Meinke,D. W., Cherry,J. M., Dean,C. D., Rounsley,S. & Koornneef,M. Arabidopsis thaliana: a model plant for genome analysis. Science 282, 662–682 (1998).

    Article  ADS  CAS  Google Scholar 

  2. Copenhaver,G. C. & Pikaard,C. S. Two dimensional RFLP analyses reveal megabase-sized clusters of rRNA gene variants in Arabidopsis thaliana, suggesting local spreading of variants as the mode for gene homogenization during concerted evolution. Plant J. 9, 273–282 (1996).

    Article  CAS  Google Scholar 

  3. Lister,C. & Dean,C. Recombinant inbred lines for mapping RFLP and phenotypic markers in Arabidopsis thaliana. Plant J. 4, 745–750 (1993).

    Article  CAS  Google Scholar 

  4. Bevan,M. et al. Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 391, 485–488 (1998).

    Article  ADS  CAS  Google Scholar 

  5. Kotani,H., Nakamura,Y., Sato,S., Kaneko,T., Asamizu,E. et al. Structural analysis of Arabidopsis thaliana chromosome 5. II. Sequence features of 1,044,062 bp covered by thirteen physically-assigned P1 clones. DNA Res. 4, 291–300 (1997).

    Article  CAS  Google Scholar 

  6. The C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012–2018 (1999).

    Article  Google Scholar 

  7. Gardner,M. J. et al. Chromosome 2 sequence of the human malarial parasite Plasmodium falciparum. Science 282, 1126–1132 (1998).

    Article  ADS  CAS  Google Scholar 

  8. Bowman,S. et al. The complete nucleotide sequence of chromosome 3 of Plasmodium falciparum. Nature 400, 532–538 (1999).

    Article  ADS  CAS  Google Scholar 

  9. Richards,E. J. & Ausubel,F. M. Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell 53, 127–136 (1988).

    Article  CAS  Google Scholar 

  10. Copenhaver,G. C. & Pikaard,C. S. RFLP and physical mapping with an rDNA-specific endonuclease reveals that nucleolus organiser regions of Arabidopsis thaliana adjoin the telomeres on chromosomes 2 and 4. Plant J. 9, 259–272 (1996).

    Article  CAS  Google Scholar 

  11. Richards,E. J., Goodman,H. M. & Ausubel,F. M. The centromeric region of Arabidopsis thaliana chromosome 1 contains telomere-similar sequences. Nucleic Acids Res. 19, 3351–3357 (1991).

    Article  CAS  Google Scholar 

  12. Mewes,H. W. et al. MIPS: a database for genomes and protein sequences. Nucleic Acids Res. 27, 44–48 (1999).

    Article  CAS  Google Scholar 

  13. Hubbard,T. J. P., Ailey,B., Brenner,S. E., Murzin,A. G. & Chothia,C. SCOP: a structural classification database of proteins. Nucleic Acids Res. 27, 254–256 (1999).

    Article  CAS  Google Scholar 

  14. Gerstein,M. A structural census of genomes: comparing bacterial, eukaryotic and archeal genomes in terms of protein structure. J. Mol. Biol. 274, 562–576 (1997).

    Article  CAS  Google Scholar 

  15. Mizutani,M., Ward,E. & Ohta,D. Cytochrome P-450 superfamily in Arabidopsis thaliana: isolation of cDNAS, differential expression, and RFLP mapping of multiple cytochromes P-450. Plant Mol. Biology 37, 39–52 (1998).

    Article  CAS  Google Scholar 

  16. Joazeiro,C. A. P. et al. The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 286, 309–312 (1999).

    Article  CAS  Google Scholar 

  17. Jensen,R. B., Jensen,K. L., Jespersen,H. M. & Skriver,K. Widespread occurrence of a highly conserved RING-H2 zinc finger motif in the model plant Arabidopsis thaliana. FEBS Lett. 436, 283–287 (1998).

    Article  CAS  Google Scholar 

  18. Moncrief,N. D., Kretsinger,R. H. & Goodman,M. Evolution of EF-hand calcium-modulated proteins 2. Domains of several sub-families have diverse evolutionary history. J. Mol. Evol. 30, 522–562 (1991).

    Article  ADS  Google Scholar 

  19. McAinsh,M. R. & Hetherington,A. M. Encoding specificity in Ca2+ signaling systems. Trends Plant Sci. 3, 32–36 (1998).

    Article  Google Scholar 

  20. Douglas,S. E. Plastid evolution: origins, diversity, trends. Curr. Opin. Genet. Dev. 8, 655–661 (1998).

    Article  CAS  Google Scholar 

  21. Emanuelsson,O., Nielsen,H. & von Heijne,G. ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci. 8, 978–984 (1999).

    Article  CAS  Google Scholar 

  22. Gamas,P., de Carvalho Niebel,F., Lescure,N. & Cullimore,J. V. Use of a subtractive hybridisation approach to identify new Medicago truncatula genes induced during nodule development. Mol. Plant Microbe Interaction 9, 233–242 (1996).

    Article  CAS  Google Scholar 

  23. Parniske,M. et al. Novel disease resistance specificities result from sequence exchange between tandemly repeated genes at the Cf-4/9 locus in tomato. Cell 9, 821–832 (1997).

    Article  Google Scholar 

  24. Mewes,H.-W. et al. Nature 387 (Suppl.) 7–8 (1997).

    Google Scholar 

  25. Round,E., Flowers,S. K. & Richards,E. J. Arabidopsis thaliana centromere regions: genetic map positions and repetitive DNA structure. Genome Res. 7, 1045–1054 (1997).

    Article  CAS  Google Scholar 

  26. Fransz,P. F. et al. Cytogenetics for the model system Arabidopsis thaliana. Plant J. 13, 867–876 (1998).

    Article  CAS  Google Scholar 

  27. Richards,E. J. & Dawe,R. K. Plant centromeres: structure and control. Curr. Opin. Plant Biol. 1, 130–135 (1998).

    Article  CAS  Google Scholar 

  28. Murphy,T. D. & Karpen,G. H. Localization of centromere function in a Drosophila minichromosome. Cell 82, 599–609 (1995).

    Article  CAS  Google Scholar 

  29. Henning,K. A. et al. Human artificial chromosomes generated by modification of a yeast artificial chromosome containing both human alpha satellite and single-copy sequences. Proc. Natl Acad. Sci. USA 96, 592–597 (1999).

    Article  ADS  CAS  Google Scholar 

  30. Copenhaver,G. P., Browne,W. E. & Preuss,D. Assaying genome-wide recombination and centromere functions with Arabidopsis tetrads. Proc. Natl Acad. Sci. USA 95, 247–252 (1998).

    Article  ADS  CAS  Google Scholar 

  31. Grewal,S. I. S. & Klar,A. J. S. A recombinationally repressed region between mat2 and mat3 loci shares homology to centromeric repeats and regulates directionality of mating type switching in fission yeast. Genetics 146, 1221–1238 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Allshire,R. C., Nimmo,E. R., Ekwall,K., Javerzat,J.-P. & Cranston,G. Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation. Genes Dev. 9, 218–233 (1995).

    Article  CAS  Google Scholar 

  33. Xu,X. J., Hsai,A.-P., Zhang,L., Nikolau,B. J. & Schnable,P. S. Meiotic recombination breakpoints resolve at high rates at the 5′ end of a maize coding sequence. Plant Cell 7, 2151–2161 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lin,X. et al. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402, 761–768 (1999).

    Article  ADS  CAS  Google Scholar 

  35. Choi,S. D., Creelman,R., Mullet,J. & Wing,R. A. Construction and characterisation of a bacterial artificial chromosome library from Arabidopsis thaliana. Weeds World 2, 17–20 (1995).

    CAS  Google Scholar 

  36. Mozo,T. et al. A complete BAC-based physical map of the Arabidopsis thaliana genome. Nature Genet. 22, 271–275 (1999).

    Article  CAS  Google Scholar 

  37. Marra,M. et al. A map or sequence analysis of the Arabidopsis thaliana genome. Nature Genet. 22, 265–270 (1999).

    Article  CAS  Google Scholar 

  38. Bent,E., Johnson,S. & Bancroft,I. BAC representation of two low-copy regions of the genome of Arabidopsis thaliana. Plant J. 13, 849–855 (1998).

    Article  CAS  Google Scholar 

  39. Vos,P. et al. AFLP, a new technique for DNA fingerprinting. Nucleic Acids Res. 23, 4407–4414 (1995).

    Article  CAS  Google Scholar 

  40. Borodovsky,M. & Peresetsky,A. Deriving non-homogeneous DNA Markov chain models by cluster analysis algorithm minimizing multiple alignment entropy. Comput. Chem. 18, 259–267 (1994).

    Article  CAS  Google Scholar 

  41. Uberbacher,E. C. & Mural,R. J. Locating protein coding regions in human DNA sequences by a multiple sensor-neural network approach. Proc. Natl Acad. Sci. 88, 1261–1265 (1991).

    Article  Google Scholar 

  42. Burge,C. & Karlin,S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78–94 (1997).

    Article  CAS  Google Scholar 

  43. Hebsgaard,S. M. et al. Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information. Nucleic Acids Res. 24, 3439–3452 (1996).

    Article  CAS  Google Scholar 

  44. Altschul,S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  Google Scholar 

  45. Fichant,G. A. & Burks,C. Identifying potential tRNA genes in genomic DNA sequences. J. Mol. Biol. 220, 659–671 (1991).

    Article  CAS  Google Scholar 

  46. Wootton,J. C. & Federhen,S. Statistics of local complexity in amino acid sequences and sequence databases. Comput. Chem. 17, 149–163 (1993).

    Article  CAS  Google Scholar 

  47. Lupas,A. N., van Dyke,M. & Stock,J. Predicting coiled coils from protein sequences. Science 252, 1162–1164 (1991).

    Article  ADS  CAS  Google Scholar 

  48. Klein,P., Kanehisa,M. & DeLisi,C. The detection and classification of membrane-spanning proteins. Biochim. Biophys. Acta 815, 468–476 (1985).

    Article  CAS  Google Scholar 

  49. Schäffer,A. A. et al. IMPALA: Software to match a protein sequence against a collection of PSI-BLAST-constructed position–specific score matrices. Bioinformatics, in the press.

  50. Pearson,W. R. & Lipman,D. J. Improved tools for biological sequence comparison. Proc. Natl Acad. Sci. 85, 2444–2448 (1988).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank A. Schäffer for invaluable assistance with the IMPALA software and S. Brenner for providing an up-to-date version of the SCOP database. We are grateful to S. Choi for a copy of his large-insert BAC library. Scientists at the John Innes Centre are acknowledged for their help in interpreting gene function. This work was funded in part by Contracts from the European Commission, by the National Science Foundation (NSF) Cooperative Agreement (funded by the NSF, US Department of Agriculture and the US Department of Energy), and by a grant from the USDA NRI Plant Genome Program. Additional support from the Biotechnology and Biological Sciences Research Council, Bundesministerium f. Bildung, Forschung und Technologie, Groupe de Recherche et d'etude des Genomes, Plan Nacional de Investigacion Cientifica y Technica, Westvaco Corporation and D. L. Luke III is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bevan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mayer, K., Schüller, C., Wambutt, R. et al. Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana. Nature 402, 769–777 (1999). https://doi.org/10.1038/47134

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/47134

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing