Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A low-temperature origin for the planetesimals that formed Jupiter


The four giant planets in the Solar System have abundances of ‘metals’ (elements heavier than helium), relative to hydrogen, that are much higher than observed in the Sun. In order to explain this, all models for the formation of these planets rely on an influx of solid planetesimals17. It is generally assumed that these planetesimals were similar, if not identical, to the comets from the Oort cloud that we see today. Comets that formed in the region of the giant planets should not have contained much neon, argon and nitrogen, because the temperatures were too high for these volatile gases to be trapped effectively in ice. This means that the abundances of those elements on the giant planets should be approximately solar. Here we show that argon, krypton and xenon in Jupiter's atmosphere are enriched to the same extent as the other heavy elements, which suggests that the planetesimals carrying these elements must have formed at temperatures lower than predicted by present models of giant-planet formation.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Elemental abundances (relative to hydrogen) in Jupiter's atmosphere compared with solar values.


  1. Mahaffy,P. R., Donahue,T. M., Atreya,S. K., Owen,T. & Niemann,H. B. in Primordial Nuclei and their Galactic Evolution (eds Prantzos, N., Tosi, M. & von Steiger, R.) 239–250 (Kluwer, Dordrecht, 1998).

    Google Scholar 

  2. Mahaffy,P. R., Niemann,H. B., Alpert,A., Atreya,S. K., Donahue,T. M. & Owen,T. Heavy noble gases in the atmosphere of Jupiter. Bull. Am. Astron. Soc. 30, 1066 (1998).

    ADS  Google Scholar 

  3. Niemann,H. et al. The composition of the Jovian atmosphere as determined by the Galileo probe mass spectrometer. J. Geophys. Res. 103, 22831–22845 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Roulston,M. S. & Stevenson,D. J. Preduction of neon depletion in Jupiter's atmosphere (abstract). Eos 76, F343 (1995).

    Google Scholar 

  5. de Pater,I. & Massie,S. T. Models of the millimeter-centimeter spectra of the giant planets. Icarus 62, 143–171 (1985).

    Article  ADS  CAS  Google Scholar 

  6. de Pater,I. Jupiter's zone-belt structure at radio wavelengths. Icarus 68, 344–365 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Joiner,J. & Steffes,P. B. Modelling of Jupiter's millimeter wave emission utilizing laboratory measurements of ammonia (NH3) opacity. J. Geophys. Res. 96, 17463–17470 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Romani,P. N., de Pater,I. & Zahnle,K. Galileo, SL9 and Jupiter's deep atmosphere. Bull. Am. Astron. Soc. 27, 81 (1995).

    Google Scholar 

  9. Folkner,W. M., Woo,R. & Nandi,S. Ammonia abundance in Jupiter's atmosphere derived from attenuation of the Galileo probe's radio signal. J. Geophys. Res. 103, 22847–22856 (1998).

    Article  ADS  CAS  Google Scholar 

  10. Anders,E. & Grevesse,N. Abundances of the elements: Meteoritic and solar. Geochim. Cosmochim. Acta. 53, 197–214 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Atreya,S. K., Wong,M. H., Owen,T., Mahaffy,P. R., Niemann,H., de Pater,I., Drossart,P. & Encreanz,Th. A comparison of the atmosphere of Jupiter and Saturn: Deep atmospheric composition, cloud structure, vertical mixing and origin. Planet. Space Sci. (in the press).

  12. Owen,T. & Bar-Nun,A. Comets, impacts and atmospheres. Icarus 116, 215–226 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Bar-Nun,A., Kleinfeld,I. & Kochavi,E. Trapping of gas mixtures by amorphous water ice. Phys. Rev. B 38, 7749–7754 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Cassen,P. Utilitarian models of the solar nebula. Icarus 112, 405–429 (1994).

    Article  ADS  Google Scholar 

  15. Linke,R. A., Guelin,M. & Langer,W. O. Detection of H15 NN+ and HN15 N+ in interstellar clouds. Astrophys. J. 271, L85–L88 (1983).

    Article  ADS  CAS  Google Scholar 

  16. Womack,M., Wyckhoff,S. & Ziurys,L. M. Observational constraints on Solar Nebula nitrogen chemistry: N2/NH3. Astrophys. J. 401, 728–735 (1992).

    Article  ADS  CAS  Google Scholar 

  17. Van Dishoeck,E. F., Blake,G. A., Draine,B. T. & Lunine,J. I. in Protostars and Planets III (eds Levy, E. H. & Lunine, J. I.) 163–244 (Univ. Arizona Press, Tucson, 1993).

    Google Scholar 

  18. Geiss,J. Composition of Halley's Comet: Clues to origin and history of cometary matter. Rev. Modern Astron. 1, 1–27 (1988).

    Article  ADS  CAS  Google Scholar 

  19. Krankowsky,D. in Comets in the Post-Halley Era (eds Newburn, R. L. Jr, Neugebauer, M. & Rahe, J.) 855–878 (Kluwer, Dordrecht, 1991).

    Google Scholar 

  20. Wyckoff,S., Tegler,S. C. & Engel,L. Nitrogen abundance in Comet Halley. Astrophys. J. 367, 641–648 (1991).

    Article  ADS  Google Scholar 

  21. Owen,T., Atreya,S. K., Mahaffy,P., Niemann,H. B. & Wong,M. H. in Three Galileos: The Man, The Spacecraft, The Telescope (eds Barbieri, C., Rahe, J., Johnson, T. V. & Sohus, A.) 289–297 (Kluwer, Dordrecht, 1997).

    Google Scholar 

  22. Atreya,S. K., Owen,T. C., Wong,M. H., Niemann,H. B. & Mahaffy,P. R. in Three Galileos: The Man, The Spacecraft, The Telescope (eds Barbieri, C., Rahe, J., Johnson, T. V. & Sohus, A.) 289–297 (Kluwer, Dordrecht, 1997).

    Google Scholar 

  23. Showman,A. P. & Ingersoll,A. P. Interpretation of Galileo Probe data and implications for Jupiter's dry downdrafts. Icarus 132, 205–220 (1998).

    Article  ADS  CAS  Google Scholar 

  24. Marten,A. et al. First observations of CO and HCN on Neptune and Uranus at millimeter wavelengths and their implications for atmospheric chemistry. Astrophys. J. 406, 285–297 (1993).

    Article  ADS  CAS  Google Scholar 

Download references


We thank NASA for supporting this research.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Tobias Owen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Owen, T., Mahaffy, P., Niemann, H. et al. A low-temperature origin for the planetesimals that formed Jupiter. Nature 402, 269–270 (1999).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing