Letter | Published:

A low-temperature origin for the planetesimals that formed Jupiter

Nature volume 402, pages 269270 (18 November 1999) | Download Citation

Subjects

Abstract

The four giant planets in the Solar System have abundances of ‘metals’ (elements heavier than helium), relative to hydrogen, that are much higher than observed in the Sun. In order to explain this, all models for the formation of these planets rely on an influx of solid planetesimals17. It is generally assumed that these planetesimals were similar, if not identical, to the comets from the Oort cloud that we see today. Comets that formed in the region of the giant planets should not have contained much neon, argon and nitrogen, because the temperatures were too high for these volatile gases to be trapped effectively in ice. This means that the abundances of those elements on the giant planets should be approximately solar. Here we show that argon, krypton and xenon in Jupiter's atmosphere are enriched to the same extent as the other heavy elements, which suggests that the planetesimals carrying these elements must have formed at temperatures lower than predicted by present models of giant-planet formation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , , , & in Primordial Nuclei and their Galactic Evolution (eds Prantzos, N., Tosi, M. & von Steiger, R.) 239–250 (Kluwer, Dordrecht, 1998).

  2. 2.

    , , , , & Heavy noble gases in the atmosphere of Jupiter. Bull. Am. Astron. Soc. 30, 1066 (1998).

  3. 3.

    et al. The composition of the Jovian atmosphere as determined by the Galileo probe mass spectrometer. J. Geophys. Res. 103, 22831–22845 (1998).

  4. 4.

    & Preduction of neon depletion in Jupiter's atmosphere (abstract). Eos 76, F343 (1995).

  5. 5.

    & Models of the millimeter-centimeter spectra of the giant planets. Icarus 62, 143–171 (1985).

  6. 6.

    Jupiter's zone-belt structure at radio wavelengths. Icarus 68, 344–365 (1986).

  7. 7.

    & Modelling of Jupiter's millimeter wave emission utilizing laboratory measurements of ammonia (NH3) opacity. J. Geophys. Res. 96, 17463–17470 (1991).

  8. 8.

    , & Galileo, SL9 and Jupiter's deep atmosphere. Bull. Am. Astron. Soc. 27, 81 (1995).

  9. 9.

    , & Ammonia abundance in Jupiter's atmosphere derived from attenuation of the Galileo probe's radio signal. J. Geophys. Res. 103, 22847–22856 (1998).

  10. 10.

    & Abundances of the elements: Meteoritic and solar. Geochim. Cosmochim. Acta. 53, 197–214 (1989).

  11. 11.

    , , , , , , & A comparison of the atmosphere of Jupiter and Saturn: Deep atmospheric composition, cloud structure, vertical mixing and origin. Planet. Space Sci. (in the press).

  12. 12.

    & Comets, impacts and atmospheres. Icarus 116, 215–226 (1995).

  13. 13.

    , & Trapping of gas mixtures by amorphous water ice. Phys. Rev. B 38, 7749–7754 (1988).

  14. 14.

    Utilitarian models of the solar nebula. Icarus 112, 405–429 (1994).

  15. 15.

    , & Detection of H15 NN+ and HN15 N+ in interstellar clouds. Astrophys. J. 271, L85–L88 (1983).

  16. 16.

    , & Observational constraints on Solar Nebula nitrogen chemistry: N2/NH3. Astrophys. J. 401, 728–735 (1992).

  17. 17.

    , , & in Protostars and Planets III (eds Levy, E. H. & Lunine, J. I.) 163–244 (Univ. Arizona Press, Tucson, 1993).

  18. 18.

    Composition of Halley's Comet: Clues to origin and history of cometary matter. Rev. Modern Astron. 1, 1–27 (1988).

  19. 19.

    in Comets in the Post-Halley Era (eds Newburn, R. L. Jr, Neugebauer, M. & Rahe, J.) 855–878 (Kluwer, Dordrecht, 1991).

  20. 20.

    , & Nitrogen abundance in Comet Halley. Astrophys. J. 367, 641–648 (1991).

  21. 21.

    , , , & in Three Galileos: The Man, The Spacecraft, The Telescope (eds Barbieri, C., Rahe, J., Johnson, T. V. & Sohus, A.) 289–297 (Kluwer, Dordrecht, 1997).

  22. 22.

    , , , & in Three Galileos: The Man, The Spacecraft, The Telescope (eds Barbieri, C., Rahe, J., Johnson, T. V. & Sohus, A.) 289–297 (Kluwer, Dordrecht, 1997).

  23. 23.

    & Interpretation of Galileo Probe data and implications for Jupiter's dry downdrafts. Icarus 132, 205–220 (1998).

  24. 24.

    et al. First observations of CO and HCN on Neptune and Uranus at millimeter wavelengths and their implications for atmospheric chemistry. Astrophys. J. 406, 285–297 (1993).

Download references

Acknowledgements

We thank NASA for supporting this research.

Author information

Affiliations

  1. *University of Hawaii, Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, Hawaii 96822, USA

    • Tobias Owen
  2. †Laboratory for Atmospheres, Goddard Space Flight Center, Greenbelt, Maryland 20771, USA

    • Paul Mahaffy
    •  & H. B. Niemann
  3. ‡Atmospheric Ocean & Space Science, University of Michigan, Ann Arbor, Michigan 48109, USA

    • Sushil Atreya
    •  & Thomas Donahue
  4. §Department of Geophysics & Planetary Sciences, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, Israel

    • Akiva Bar-Nun
  5. Department of Astronomy, University of California, Berkeley, 601 Campbell Hall, Berkeley, California 94720-3411, USA

    • Imke de Pater

Authors

  1. Search for Tobias Owen in:

  2. Search for Paul Mahaffy in:

  3. Search for H. B. Niemann in:

  4. Search for Sushil Atreya in:

  5. Search for Thomas Donahue in:

  6. Search for Akiva Bar-Nun in:

  7. Search for Imke de Pater in:

Corresponding author

Correspondence to Tobias Owen.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/46232

Further reading

  • 1.

    JIRAM, the Jovian Infrared Auroral Mapper

    • Alberto Adriani
    • , Gianrico Filacchione
    • , Tatiana Di Iorio
    • , Diego Turrini
    • , Raffaella Noschese
    • , Andrea Cicchetti
    • , Davide Grassi
    • , Alessandro Mura
    • , Giuseppe Sindoni
    • , Massimo Zambelli
    • , Giuseppe Piccioni
    • , Maria T. Capria
    • , Federico Tosi
    • , Roberto Orosei
    • , Bianca M. Dinelli
    • , Maria L. Moriconi
    • , Elio Roncon
    • , Jonathan I. Lunine
    • , Heidi N. Becker
    • , Alessadro Bini
    • , Alessandra Barbis
    • , Luciano Calamai
    • , Claudio Pasqui
    • , Stefano Nencioni
    • , Maurizio Rossi
    • , Marco Lastri
    • , Roberto Formaro
    •  & Angelo Olivieri

    Space Science Reviews (2017)

  • 2.

    The Juno Mission

    • S. J. Bolton
    • , J. Lunine
    • , D. Stevenson
    • , J. E. P. Connerney
    • , S. Levin
    • , T. C. Owen
    • , F. Bagenal
    • , D. Gautier
    • , A. P. Ingersoll
    • , G. S. Orton
    • , T. Guillot
    • , W. Hubbard
    • , J. Bloxham
    • , A. Coradini
    • , S. K. Stephens
    • , P. Mokashi
    • , R. Thorne
    •  & R. Thorpe

    Space Science Reviews (2017)

  • 3.

    MWR: Microwave Radiometer for the Juno Mission to Jupiter

    • M. A. Janssen
    • , J. E. Oswald
    • , S. T. Brown
    • , S. Gulkis
    • , S. M. Levin
    • , S. J. Bolton
    • , M. D. Allison
    • , S. K. Atreya
    • , D. Gautier
    • , A. P. Ingersoll
    • , J. I. Lunine
    • , G. S. Orton
    • , T. C. Owen
    • , P. G. Steffes
    • , V. Adumitroaie
    • , A. Bellotti
    • , L. A. Jewell
    • , C. Li
    • , L. Li
    • , S. Misra
    • , F. A. Oyafuso
    • , D. Santos-Costa
    • , E. Sarkissian
    • , R. Williamson
    • , J. K. Arballo
    • , A. Kitiyakara
    • , A. Ulloa-Severino
    • , J. C. Chen
    • , F. W. Maiwald
    • , A. S. Sahakian
    • , P. J. Pingree
    • , K. A. Lee
    • , A. S. Mazer
    • , R. Redick
    • , R. E. Hodges
    • , R. C. Hughes
    • , G. Bedrosian
    • , D. E. Dawson
    • , W. A. Hatch
    • , D. S. Russell
    • , N. F. Chamberlain
    • , M. S. Zawadski
    • , B. Khayatian
    • , B. R. Franklin
    • , H. A. Conley
    • , J. G. Kempenaar
    • , M. S. Loo
    • , E. T. Sunada
    • , V. Vorperion
    •  & C. C. Wang

    Space Science Reviews (2017)

  • 4.

    Exoplanetary Atmospheres—Chemistry, Formation Conditions, and Habitability

    • Nikku Madhusudhan
    • , Marcelino Agúndez
    • , Julianne I. Moses
    •  & Yongyun Hu

    Space Science Reviews (2016)

  • 5.

    Nitrogen isotope variations in the Solar System

    • Evelyn Füri
    •  & Bernard Marty

    Nature Geoscience (2015)

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.