Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tube pumices as strain markers of the ductile–brittle transition during magma fragmentation

Abstract

Magma fragmentation—the process by which relatively slow-moving magma transforms into a violent gas flow carrying fragments of magma—is the defining feature of explosive volcanism. Yet of all the processes involved in explosively erupting systems, fragmentation is possibly the least understood1,2. Several theoretical and laboratory studies on magma degassing3,4,5,6,7 and fragmentation8,9,10,11 have produced a general picture of the sequence of events leading to the fragmentation of silicic magma12,13,14. But there remains a debate2 over whether magma fragmentation is a consequence of the textural evolution of magma to a foamed state where disintegration of walls separating bubbles becomes inevitable due to a foam-collapse criterion, or whether magma is fragmented purely by stresses that exceed its tensile strength. Here we show that tube pumice—where extreme bubble elongation is observed—is a well-preserved magmatic ‘strain marker’ of the stress state immediately before and during fragmentation. Structural elements in the pumice record the evolution of the magma's mechanical response from viscous behaviour (foaming and foam elongation) through the plastic or viscoelastic stage, and finally to brittle behaviour. These observations directly support the hypothesis that fragmentation occurs when magma undergoes a ductile–brittle transition and stresses exceed the magma's tensile strength.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Texture of the tube pumice lapilli from Ramadas.
Figure 2: Synthetic pattern of the deformation structures observed in pumice clasts of the Ramadas pyroclastic deposit.

Similar content being viewed by others

References

  1. Cashman,K. V. & Mangan,M. T. in Volatiles in Magmas (eds Carroll, M. R. & Holloway, J. R.) 449–478 (Mineral. Soc. Am. Rev. Mineral. 30, 1994).

    Google Scholar 

  2. Dingwell,D. B. Volcanic dilemma: flow or blow? Science 273, 1054–1055 (1996).

    Article  ADS  CAS  Google Scholar 

  3. Toramaru,A. Numerical study of nucleation and growth of bubbles in viscous magmas. J. Geophys. Res. 100, 1913–1931 (1995).

    Article  ADS  Google Scholar 

  4. Proussevitch,A. A. & Sahagian,D. L. Dynamics and energetics of bubble growth in magmas: analytical formulation and numerical modelling. J. Geophys. Res. 103, 18223–18251 (1998).

    Article  ADS  Google Scholar 

  5. Barclay,J., Riley,D. & Sparks,R. S. J. Analytical models for bubble growth during decompression of high viscosity magmas. Bull. Volcanol. 57, 422–431 (1995).

    Article  ADS  Google Scholar 

  6. Bagdassarov,N., Dingwell,D. B. & Wilding,M. Rhyolite magma degassing: an experimental study of melt vesiculation. Bull. Volcanol. 57, 587–601 (1996).

    Article  ADS  Google Scholar 

  7. Lyakhovsky,V., Hurwitz,S. & Navon,O. Bubble growth in rhyolitic melts: experimental and numerical investigation. Bull. Volcanol. 58, 19–32 (1996).

    Article  ADS  Google Scholar 

  8. Papale,P. Strain-induced magma fragmentation in explosive eruptions. Nature 397, 425–428 (1998).

    Article  ADS  Google Scholar 

  9. Mader,H. M., Phillips,J. C., Sparks,R. S. J. & Sturtevant,B. Dynamics of explosive degassing of magma: observations of fragmenting two-phase flows. J. Geophys. Res. 101, 5547–5560 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Alidibirov,M. & Dingwell,D. B. Magma fragmentation by rapid decompression. Nature 380, 146–148 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Klug,C. & Cashman,K. V. Permeability development in vesiculating magmas: implications for vesiculation, foam formation and fragmentation in lava fountains. Bull. Volcanol. 58, 87–100 (1996).

    Article  ADS  Google Scholar 

  12. Dingwell,D. B. in From Magma to Tephra: Modelling Physical Processes of Explosive Volcanic Eruptions (eds Freundt, A. & Rosi, M.) 1–23 (Springer, Berlin, 1998).

    Google Scholar 

  13. Dingwell,D. B. in The Physics of Explosive Volcanic Eruptions (eds Gilbert, J. & Sparks, R. S. J.) 1–26 (The Geological Society of London, Special Publication 145, 1998).

    Google Scholar 

  14. Mader,H. M. in The Physics of Explosive Volcanic Eruptions (eds Gilbert, J. & Sparks, R. S. J.) 51–71 (The Geological Society of London, Special Publication 145, 1998).

    Google Scholar 

  15. Dingwell,D. B. & Webb,S. L. Structural relaxation in silicate melts and non-Newtonian melt rheology in igneous processes. Phys. Chem. Mineral. 16, 508–516 (1989).

    Article  ADS  CAS  Google Scholar 

  16. Heiken,G. & Wohletz,K. Volcanic Ash 246 (University of California Press, Berkeley, 1984).

    Google Scholar 

  17. Houghton,B. F. & Wilson,C. J. N. A vesicularity index for pyroclastic deposits. Bull. Volcanol. 51, 451–462 (1989).

    Article  ADS  Google Scholar 

  18. Dellino,P. & La Volpe,L. Fragmentation versus transportation mechanisms in the pyroclastic sequence of Monte Pilato-Rocche Rosse (Lipari, Italy) J. Volcanol. Geotherm. Res. 64, 211–231 (1995).

    Article  ADS  CAS  Google Scholar 

  19. Thomas,N., Jaupart,C. & Vergniolle,S. On the vesicularity of pumice. J. Geophys. Res. 99, 15633–15644 (1994).

    Article  ADS  Google Scholar 

  20. Viramonte,J. G. et al. Edad, genesis y mecanismos de erupción de las riolitas granatíferas de San Antionio de los Cobres, Privincia de Salta (Argentina) Actas IX Congreso Geológico Argentino, Bariloche, Argentina 3, 216–233 (1984).

    Google Scholar 

  21. Viramonte,J. G., Reynolds,J. H., Del Papa,C. & Disalvo,A. The Corte Blanco garnetiferous tuff: Adistinctive late Miocene marker bed in northern Argentina applied to magnetic polarity stratigraph in the Rio Yacones, Salta province. Earth Planet. Sci. Lett. 121, 519–531 (1994).

    Article  ADS  CAS  Google Scholar 

  22. Heiken,G. Plinian eruptions in the Medicine Lake Highland, California, and the nature of underlying magma. J. Volcanol. Geotherm. Res. 4, 375–402 (1978).

    Article  ADS  Google Scholar 

  23. Heiken,G. & Eichelberger,J. Eruptions at Chaos Crags, Lassen Volcanic National Park, California J. Volcanol. Geotherm. Res. 7, 443–481 (1980).

    Article  ADS  CAS  Google Scholar 

  24. Gauthier,P. J., Déruelle,B., Viramonte,J. G. & Aparicio,A. Grenats des rhyolites de la caldéra de La Pava-Ramada (NW Argentine) et leurs xénolites granitíques. C. R. Acad. Sci. 318, 1629–1635 (1994).

    CAS  Google Scholar 

  25. Hess,K.-U. & Dingwell,D. B. Viscosities of hydrous leucogranitic melts: a non-Arrhenian model. Am. Mineral. 81, 1297–1300 (1996).

    CAS  Google Scholar 

  26. Dingwell,D. B., Bagdassarov,N. S., Bussod,G. Y. & Webb,S. in Experiments at High Pressure and Applications to the Earth's Mantle (ed. Luth, R. W.) 131–196 (Mineral. Assoc. Can. Short Course Handbook 21, 1993).

    Google Scholar 

  27. Chouet,B. A. Monitoring and Mitigation of Volcano Hazards (eds Scarpa, R. & Tilling, R.) (Springer, Berlin, 1996).

    Google Scholar 

  28. Stein,D. J. & Spera,F. J. Rheology and microstructure of magnetic emulsions: theory and experiments. J. Volcanol. Geotherm. Res. 49, 157–174 (1992).

    Article  ADS  Google Scholar 

  29. Dingwell,D. B. in Structure and Dynamics of Silicate Melts (eds Stebbins, J. F., McMillan, P. W. & Dingwell, D. B.) 21–66 (Mineral. Soc. Am. Rev. Mineral. 32, (1995).

    Chapter  Google Scholar 

  30. Martel,C., Dingwell,D. B., Spieler,O., Pichavant,M. & Holtz,F. Systematic foaming and fragmentation in synthetic melts. Eos 79, F981 (1998).

    Google Scholar 

Download references

Acknowledgements

We thank J. G. Viramonte for discussions on the Ramadas eruption and field assistance. This work was supported by European Union, DAAD, DFG (Di 431) and MEC grants.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martí, J., Soriano, C. & Dingwell, D. Tube pumices as strain markers of the ductile–brittle transition during magma fragmentation. Nature 402, 650–653 (1999). https://doi.org/10.1038/45219

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/45219

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing