Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Association between FAS polymorphism and prostate cancer development

Abstract

The role of FAS polymorphisms in prostate cancer has not been studied. Using the PCR-based restriction fragment-length polymorphism methodology, we evaluated FAS gene locus −670 genotypes in DNA from 904 men: 657 prostate cancer patients and 247 healthy controls. We found that carriers of AG or GG genotypes have a statistically significant protection (odds ratio (OR)=0.30; confidence interval (CI): 0.20–0.44 and OR=0.22; CI: 0.12–0.74, respectively) for disease with extra-capsular invasion. Taken together, a 72% protection was found for G allele carriers (OR=0.28; CI: 0.19–0.41). Fas exist as membrane-bound and soluble forms and with opposite roles. They derive from the same gene by alternative splicing. Membrane Fas receptors trigger apoptosis whereas, on the other hand, soluble Fas (sFas) bind to Fas ligand antagonizing Fas–Fas ligand apoptotic pathway. Our results suggest that G allele may reduce sFas levels preventing the apoptotic inhibition caused by the soluble form.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Evan G, Vousden K . Proliferation, cell cycle and apoptosis in cancer. Nature 2001; 17: 342–348.

    Article  Google Scholar 

  2. Lowe S, Lin A . Apoptosis in cancer. Carcinogenesis 2000; 21: 485–495.

    Article  CAS  PubMed  Google Scholar 

  3. Itoh N, Yonehara S, Sameshima M . The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 1991; 66: 233–243.

    Article  CAS  PubMed  Google Scholar 

  4. Oehm A, Behrmann I, Klas C . Purification and molecular cloning of the APO-1 cell surface antigen, a member of the tumor necrosis factor/nerve growth factor receptor superfamily. Sequence identity with the Fas antigen. J Biol Chem 1992; 267: 10709–10715.

    CAS  PubMed  Google Scholar 

  5. Suda T, Takahashi T, Nagata S . Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 1993; 75: 1169–1178.

    Article  CAS  PubMed  Google Scholar 

  6. Trauth B, Klas C, Falk W . Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 1989; 245: 301–305.

    Article  CAS  PubMed  Google Scholar 

  7. Houston A, O’Connell J . The Fas signalling pathway and its role in the pathogenesis of cancer. Curr Opin Pharmacol 2004; 4: 321–326.

    Article  CAS  PubMed  Google Scholar 

  8. Muschen M, Warskulat U, Beckmann M . Defining CD95 as a tumor suppressor gene. J Mol Med 2000; 78: 312–325.

    Article  CAS  PubMed  Google Scholar 

  9. Bel Hadj Jrad B, Mahfouth W, Bouaouina N, Gabbouj S, Ahmed SB, Ltaief M et al. A polymorphism in FAS gene promoter associated with increased risk of nasopharyngeal carcinoma and correlated with anti-nuclear autoantibodies induction. Cancer Lett 2006; 233: 21–27.

    Article  CAS  PubMed  Google Scholar 

  10. Krippl P, Langsenlehner U, Renner W, Koppel H, Samonigg H . Re: Polymorphisms of death pathway genes FAS and FASL in esophageal squamous-cell carcinoma. J Natl Cancer Inst 2004; 96: 1478–1479; author reply 1479.

    Article  PubMed  Google Scholar 

  11. Lai HC, Sytwu HK, Sun CA, Yu MH, Yu CP, Liu HS et al. Single nucleotide polymorphism at Fas promoter is associated with cervical carcinogenesis. Int J Cancer 2003; 103: 221–225.

    Article  CAS  PubMed  Google Scholar 

  12. Li C, Larson D, Zhang Z, Liu Z, Strom SS, Gershenwald JE et al. Polymorphisms of the FAS and FAS ligand genes associated with risk of cutaneous malignant melanoma. Pharmacogenet Genomics 2006; 16: 253–263.

    Article  PubMed  Google Scholar 

  13. Li C, Wu W, Liu J, Qian L, Li A, Yang K et al. Functional polymorphisms in the promoter regions of the FAS and FAS ligand genes and risk of bladder cancer in south China: a case – control analysis. Pharmacogenet Genomics 2006; 16: 245–251.

    Article  CAS  PubMed  Google Scholar 

  14. Sibley K, Rollinson S, Allan JM, Smith AG, Law GR, Roddam PL et al. Functional FAS promoter polymorphisms are associated with increased risk of acute myeloid leukemia. Cancer Res 2003; 63: 4327–4330.

    CAS  PubMed  Google Scholar 

  15. Sun T, Miao X, Zhang X, Tan W, Xiong P, Lin D . Polymorphisms of death pathway genes FAS and FASL in esophageal squamous-cell carcinoma. J Natl Cancer Inst 2004; 96: 1030–1036.

    Article  CAS  PubMed  Google Scholar 

  16. Ueda M, Terai Y, Kanda K, Kanemura M, Takehara M, Yamaguchi H et al. Fas gene promoter –670 polymorphism in gynecological cancer. Int J Gynecol Cancer 2006; 16 (Suppl 1): 179–182.

    Article  PubMed  Google Scholar 

  17. Wang LE, Cheng L, Spitz MR, Wei Q . Fas A670G polymorphism, apoptotic capacity in lymphocyte cultures, and risk of lung cancer. Lung Cancer 2003; 42: 1–8.

    Article  CAS  PubMed  Google Scholar 

  18. Yang S, Miao XP, Zhang XM, Sun T, Qu SN, Xiong P et al. Genetic polymorphisms of apoptosis-associated genes FAS and FASL and risk of colorectal cancer. Zhonghua Yi Xue Za Zhi 2005; 85: 2132–2135.

    CAS  PubMed  Google Scholar 

  19. Zhang B, Sun T, Xue L, Han X, Zhang B, Lu N et al. Functional polymorphisms in FAS and FASL contribute to increased apoptosis of tumor infiltration lymphocytes and risk of breast cancer. Carcinogenesis 2007; 28: 1067–1073.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang X, Miao X, Sun T, Tan W, Qu S, Xiong P et al. Functional polymorphisms in cell death pathway genes FAS and FASL contribute to risk of lung cancer. J Med Genet 2005; 42: 479–484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang Z, Wang LE, Sturgis EM, El-Naggar AK, Hong WK, Amos CI et al. Polymorphisms of FAS and FAS ligand genes involved in the death pathway and risk and progression of squamous cell carcinoma of the head and neck. Clin Cancer Res 2006; 12: 5596–5602.

    Article  CAS  PubMed  Google Scholar 

  22. Lai HC, Lin WY, Lin YW, Chang CC, Yu MH, Chen CC et al. Genetic polymorphisms of FAS and FASL (CD95/CD95L) genes in cervical carcinogenesis: an analysis of haplotype and gene–gene interaction. Gynecol Oncol 2005; 99: 113–118.

    Article  CAS  PubMed  Google Scholar 

  23. Huang QR, Morris D, Manolios N . Identification and characterization of polymorphisms in the promoter region of the human Apo-1/Fas (CD95) gene. Mol Immunol 1997; 34: 577–582.

    Article  CAS  PubMed  Google Scholar 

  24. Kanemitsu S, Ihara K, Saifddin A, Otsuka T, Takeuchi T, Nagayama J et al. A functional polymorphism in fas (CD95/APO-1) gene promoter associated with systemic lupus erythematosus. J Rheumatol 2002; 29: 1183–1188.

    CAS  PubMed  Google Scholar 

  25. Hsing AW, Tsao L, Devesa SS . International trends and patterns of prostate cancer incidence and mortality. Int J Cancer 2000; 85: 60–67.

    Article  CAS  PubMed  Google Scholar 

  26. Bott SR, Arya M, Shergill IS, Williamson M . Molecular changes in prostatic cancer. Surg Oncol 2005; 14: 91–104.

    Article  CAS  PubMed  Google Scholar 

  27. Ribeiro R, Lopes C, Medeiros R . Leptin and prostate: implications for cancer prevention—overview of genetics and molecular interactions. Eur J Cancer Prev 2004; 13: 359–368.

    Article  CAS  PubMed  Google Scholar 

  28. Ribeiro R, Lopes C, Medeiros R . The link between obesity and prostate cancer: the leptin pathway and therapeutic perspectives. Prostate Cancer Prostatic Dis 2006; 9: 19–24.

    Article  CAS  PubMed  Google Scholar 

  29. Costa S, Pinto D, Morais A, Vasconcelos A, Oliveira J, Lopes C et al. Acetylation genotype and the genetic susceptibility to prostate cancer in a southern European population. Prostate 2005; 64: 246–252.

    Article  CAS  PubMed  Google Scholar 

  30. Ferreira PM, Medeiros R, Vasconcelos A, Costa S, Pinto D, Morais A et al. Association between CYP2E1 polymorphisms and susceptibility to prostate cancer. Eur J Cancer Prev 2003; 12: 205–211.

    Article  CAS  PubMed  Google Scholar 

  31. Habuchi T . Common genetic polymorphisms and prognosis of sporadic cancers: prostate cancer as a model. Future Oncol 2006; 2: 233–245.

    Article  CAS  PubMed  Google Scholar 

  32. Medeiros R, Morais A, Vasconcelos A, Costa S, Pinto D, Oliveira J et al. Linkage between polymorphisms in the prostate specific antigen ARE1 gene region, prostate cancer risk, and circulating tumor cells. Prostate 2002; 53: 88–94.

    Article  CAS  PubMed  Google Scholar 

  33. Medeiros R, Morais A, Vasconcelos A, Costa S, Pinto D, Oliveira J et al. Endothelial nitric oxide synthase gene polymorphisms and genetic susceptibility to prostate cancer. Eur J Cancer Prev 2002; 11: 343–350.

    Article  CAS  PubMed  Google Scholar 

  34. Medeiros R, Morais A, Vasconcelos A, Costa S, Pinto D, Oliveira J et al. The role of vitamin D receptor gene polymorphisms in the susceptibility to prostate cancer of a southern European population. J Hum Genet 2002; 47: 413–418.

    Article  CAS  PubMed  Google Scholar 

  35. Medeiros R, Vasconcelos A, Costa S, Pinto D, Ferreira P, Lobo F et al. Metabolic susceptibility genes and prostate cancer risk in a southern European population: the role of glutathione S-transferases GSTM1, GSTM3, and GSTT1 genetic polymorphisms. Prostate 2004; 58: 414–420.

    Article  CAS  PubMed  Google Scholar 

  36. Ribeiro R, Vasconcelos A, Costa S, Pinto D, Morais A, Oliveira J et al. Overexpressing leptin genetic polymorphism (–2548 G/A) is associated with susceptibility to prostate cancer and risk of advanced disease. Prostate 2004; 59: 268–274.

    Article  CAS  PubMed  Google Scholar 

  37. Medeiros R, Vasconcelos A, Costa S, Pinto D, Lobo F, Morais A et al. Linkage of angiotensin I-converting enzyme gene insertion/deletion polymorphism to the progression of human prostate cancer. J Pathol 2004; 202: 330–335.

    Article  CAS  PubMed  Google Scholar 

  38. Medeiros R, Vasconcelos A, Costa S, Pinto D, Morais A, Oliveira J et al. Steroid hormone genotypes ARStuI and ER325 are linked to the progression of human prostate cancer. Cancer Genet Cytogenet 2003; 141: 91–96.

    Article  CAS  PubMed  Google Scholar 

  39. Medeiros RM, Morais A, Vasconcelos A, Costa S, Pinto D, Oliveira J et al. Outcome in prostate cancer: association with endothelial nitric oxide synthase Glu-Asp298 polymorphism at exon 7. Clin Cancer Res 2002; 8: 3433–3437.

    CAS  PubMed  Google Scholar 

  40. Wang G, Reed E, Li QQ . Apoptosis in prostate cancer: progressive and therapeutic implications (Review). Int J Mol Med 2004; 14: 23–34.

    CAS  PubMed  Google Scholar 

  41. Lee SH, Shin MS, Lee JY, Park WS, Kim SY, Jang JJ et al. In vivo expression of soluble Fas and FAP-1: possible mechanisms of Fas resistance in human hepatoblastomas. J Pathol 1999; 188: 207–212.

    Article  CAS  PubMed  Google Scholar 

  42. Jiang J, Ulbright TM, Zhang S, Eckert GJ, Kao C, Gardner TA et al. Fas and Fas ligand expression is elevated in prostatic intraepithelial neoplasia and prostatic adenocarcinoma. Cancer 2002; 95: 296–300.

    Article  PubMed  Google Scholar 

  43. Furuya Y, Fuse H, Masai M . Serum soluble Fas level for detection and staging of prostate cancer. Anticancer Res 2001; 21: 3595–3598.

    CAS  PubMed  Google Scholar 

  44. Furuya Y, Nagakawa O, Fuse H . Prognostic significance of serum soluble Fas level and its change during regression and progression of advanced prostate cancer. Endocr J 2003; 50: 629–633.

    Article  PubMed  Google Scholar 

  45. Cascino I, Fiucci G, Papoff G, Ruberti G . Three functional soluble forms of the human apoptosis-inducing Fas molecule are produced by alternative splicing. J Immunol 1995; 154: 2706–2713.

    CAS  PubMed  Google Scholar 

  46. Cheng J, Zhou T, Liu C, Shapiro JP, Brauer MJ, Kiefer MC et al. Protection from Fas-mediated apoptosis by a soluble form of the Fas molecule. Science 1994; 263: 1759–1762.

    Article  CAS  Google Scholar 

  47. Mizutani Y, Yoshida O, Bonavida B . Prognostic significance of soluble Fas in the serum of patients with bladder cancer. J Urol 1998; 160: 571–576.

    Article  CAS  PubMed  Google Scholar 

  48. Mizutani Y, Yoshida O, Ukimura O, Kawauchi A, Bonavida B, Miki T . Prognostic significance of a combination of soluble Fas and soluble Fas ligand in the serum of patients with Ta bladder cancer. Cancer Biother Radiopharm 2002; 17: 563–567.

    Article  PubMed  Google Scholar 

  49. Svatek RS, Herman MP, Lotan Y, Casella R, Hsieh JT, Sagalowsky AI et al. Soluble Fas—a promising novel urinary marker for the detection of recurrent superficial bladder cancer. Cancer 2006; 106: 1701–1707.

    Article  CAS  PubMed  Google Scholar 

  50. Murakami M, Sasaki T, Miyata H, Yamasaki S, Kuwahara K, Chayama K . Fas and Fas ligand: expression and soluble circulating levels in bile duct carcinoma. Oncol Rep 2004; 11: 1183–1186.

    CAS  PubMed  Google Scholar 

  51. Sheen-Chen SM, Chen HS, Eng HL, Chen WJ . Circulating soluble Fas in patients with breast cancer. World J Surg 2003; 27: 10–13.

    Article  PubMed  Google Scholar 

  52. Ueno T, Toi M, Tominaga T . Circulating soluble Fas concentration in breast cancer patients. Clin Cancer Res 1999; 5: 3529–3533.

    CAS  PubMed  Google Scholar 

  53. Kushlinskii NE, Britvin TA, Abbasova SG, Perevoshchikov AG, Prorokov VV, Kostanyan IA et al. Soluble Fas antigen in the serum of patients with colon cancer. Bull Exp Biol Med 2001; 131: 361–363.

    Article  CAS  PubMed  Google Scholar 

  54. Li H, Liu N, Guo L, Li JW, Liu J . Frequent expression of soluble Fas and Fas ligand in Chinese stomach cancer and its preneoplastic lesions. Int J Mol Med 2000; 5: 473–476.

    CAS  PubMed  Google Scholar 

  55. Konno R, Takano T, Sato S, Yajima A . Serum soluble fas level as a prognostic factor in patients with gynecological malignancies. Clin Cancer Res 2000; 6: 3576–3580.

    CAS  PubMed  Google Scholar 

  56. Ugurel S, Rappl G, Tilgen W, Reinhold U . Increased soluble CD95 (sFas/CD95) serum level correlates with poor prognosis in melanoma patients. Clin Cancer Res 2001; 7: 1282–1286.

    CAS  PubMed  Google Scholar 

  57. Fuks A, Parton LA, Polavarapu S, Netta D, Strassberg S, Godi I et al. Polymorphism of Fas and Fas ligand in preterm premature rupture of membranes in singleton pregnancies. Am J Obstet Gynecol 2005; 193: 1132–1136.

    Article  CAS  PubMed  Google Scholar 

  58. Kantarci OH, Hebrink DD, Achenbach SJ, Atkinson EJ, de Andrade M, McMurray CT et al. CD95 polymorphisms are associated with susceptibility to MS in women. A population-based study of CD95 and CD95L in MS. J Neuroimmunol 2004; 146: 162–170.

    Article  CAS  PubMed  Google Scholar 

  59. Mullighan CG, Heatley S, Lester S, Rischmueller M, Gordon TP, Bardy PG . Fas gene promoter polymorphisms in primary Sjogren's syndrome. Ann Rheum Dis 2004; 63: 98–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pinti M, Troiano L, Nasi M, Moretti L, Monterastelli E, Mazzacani A et al. Genetic polymorphisms of Fas (CD95) and FasL (CD178) in human longevity: studies on centenarians. Cell Death Differ 2002; 9: 431–438.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Liga Portuguesa Contra o Cancro—Centro Regional do Norte (Portuguese League Against Cancer), Yamanouchi—Astellas European Foundation and FCT—Fundação Ciência Tecnologia (PTDC/SAU-FCF/71552/2006) for their support. Grant sponsor: Liga Portuguesa Contra o Cancro-Centro Regional do Norte (Portuguese League Against Cancer).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Medeiros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lima, L., Morais, A., Lobo, F. et al. Association between FAS polymorphism and prostate cancer development. Prostate Cancer Prostatic Dis 11, 94–98 (2008). https://doi.org/10.1038/sj.pcan.4501002

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.pcan.4501002

Keywords

This article is cited by

Search

Quick links