Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Clinical Research
  • Published:

Association between genetic variations at 8q24 and prostate cancer risk in Mexican Men

Abstract

Background

Variants of 8q24 locus have been associated with prostate cancer (PCa) susceptibility. This study aims to analyze the genetic basis of PCa susceptibility in Mexican men by analyzing SNPs in the 8q24 locus for the first time.

Methods

A case-control study was performed in 875 men recruited from the Mexican Social Security Institute, 326 patients with PCa, and 549 non-PCa patients (88 with benign prostatic hyperplasia BPH and 461 healthy controls). The 8q24 locus SNPs: rs16901979, rs16983267, rs1447295, and rs7837328 were genotyped by allelic discrimination assays using TaqMan probes. Statistical analysis was performed using Epi Info statistical 7.0 and SNPstats softwares.

Results

All genotype frequencies were in Hardy-Weinberg Equilibrium. No differences were observed in genotype distribution between PCa and non-PCa patients for rs6983267. Under different inheritance models, the rs16901979, rs1447295, and rs7837328 SNPs were associated with PCa (OR = 2.8, 1.8, and 1.72, respectively; Pc < 0.001) when comparing PCa patients against controls. This association remains between PCa and BPH patients under different models (OR = 8.5, 2.2, and 1.9, respectively; Pc < 0.001). There were no significant differences in allele and genotype distribution among BPH patients and controls. The combined effect of the alleles CGAA for the SNPs rs16901979, rs6983267, rs1447295, and rs7837328 showed significant differences between PCa patients and controls (OR = 2.9, 95% CI = 1.48–5.83, Pc = 0.008). Four 8q24 variants were not associated with D’Amico score, age at diagnosis, and bone metastases.

Conclusions

Our study provides the first confirmation that variants rs16901979, rs1447295, and 7837328 at 8q24 locus are associated with PCa susceptibility in Mexican men.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fitzmaurice C, Abate D, Abbasi N, Abbastabar H, Abd-Allah F, Abdel-Rahman O, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability adjusted life-years for 29 cancer groups, 1990 to 2017: a systematic analysis for the global burden of disease study. JAMA Oncol. 2019;5:1749–68. https://doi.org/10.1001/jamaoncol.2019.2996

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pilleron S, Sarfati D, Janssen-Heijnen M, Vignat J, Ferlay J, Bray F, et al. Global cancer incidence in older adults, 2012 and 2035: a population-based study. Int J Cancer. 2019;144:49–58. https://doi.org/10.1002/ijc.31664

    Article  CAS  PubMed  Google Scholar 

  3. Bhardwaj A, Srivastava SK, Khan MA, Prajapati VK, Singh S, Carter JE, et al. Racial disparities in prostate cancer: a molecular perspective. Front Biosci. 2017;22:772–82. https://doi.org/10.2741/4515

    Article  CAS  Google Scholar 

  4. Amundadottir LT, Sulem P, Gudmundsson J, Helgason A, Baker A, Agnarsson BA, et al. A common variant associated with prostate cancer in European and African population. Nat Genet. 2006;38:652–8. https://doi.org/10.1038/ng1808

    Article  CAS  PubMed  Google Scholar 

  5. Freedman ML, Haiman CA, Patterson N, McDonald GJ, Tandon A, Waliszewska A, et al. Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men. Proc Natl Acad Sci USA. 2006;103:14068–7. https://doi.org/10.1073/pnas.0605832103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yeager M, Orr N, Hayes RB, Jacobs KB, Kraft P, Wacholder S, et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet. 2007;39:645–9. https://doi.org/10.1038/ng2022.

    Article  CAS  PubMed  Google Scholar 

  7. Li Q, Liu X, Hua RX, Wang F, An H, Zhang W, et al. Association of three 8q24 polymorphisms with prostate cancer susceptibility: evidence from a meta-analysis with 50,854 subjects. Sci Rep. 2015;5:12069 https://doi.org/10.1038/srep12069

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ghoussaini M, Song H, Koessler T, Al Olama AA, Kote-Jarai Z, Driver KE, et al. Multiple loci with different cancer specificities within the 8q24 gene desert. J Natl Cancer Inst. 2008;100:962–6. https://doi.org/10.1093/jnci/djn190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hutter CM, Slattery ML, Duggan DJ, Muehling J, Curtin K, Hsu L, et al. Characterization of the association between 8q24 and colon cancer: gene-environment exploration and meta-analysis. BMC Cancer. 2010;10:670–85. https://doi.org/10.1186/1471-2407-10-670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jia L, Landan G, Pomerantz M, Jaschek R, Herman P, Reich D, et al. Functional enhancers at the gene-poor 8q24 cancer-linked locus. PLoS Genet. 2009;5:e1000597 https://doi.org/10.1371/journal.pgen.1000597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lamb DJ, Tannour-Louet M. In vivo exploration of the functional activity of non-coding 8q24 prostate cancer risk locus. Asian J Androl. 2010;12:787–9. https://doi.org/10.1186/1471-2407-10-670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Al Olama AA, Kote-Jarai Z, Giles GG, Guy M, Morrison J, Severi G, et al. Multiple loci on 8q24 associated with prostate cancer susceptibility. Nat Genet. 2009;41:1058–60. https://doi.org/10.1038/ng.452

    Article  CAS  PubMed  Google Scholar 

  13. Grizancio C, Freedman ML. Chromosome 8q24-associated cancers and MYC. Genes Cancer. 2010;1:555–59. https://doi.org/10.1177/1947601910381380

    Article  CAS  Google Scholar 

  14. Ahmadiyeh N, Pomerantz MM, Grisanzio C, Herman P, Jia L, Almendro V, et al. 8q24 prostate, breast, and colon cancer risk loci show tissue-specific long-range interaction with MYC. Proc Natl Acad Sci USA. 2010;107:9742–46. https://doi.org/10.1073/pnas.0910668107

    Article  PubMed  PubMed Central  Google Scholar 

  15. Shi J, Zhang Y, Zheng W, Michhailidou K, Ghoussaini M, Bolla MK, et al. Fine-scale mapping of 8q24 locus identifies multiple independent risk variants for breast cancer. Int J Cancer. 2016;139:1303–17. https://doi.org/10.1002/ijc.30150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sotelo J, Esposito D, Duhagon MA, Banfield K, Mehalko J, Liao H, et al. Long-range enhancers on 8q24 regulate c-Myc. Proc Natl Acad Sci USA. 2010;107:3001–05. https://doi.org/10.1073/pnas.0906067107

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wasserman NF, Aneas I, Nobrega MA. An 8q24 gene desert variant associated with prostate cancer risk confers differential in vivo activity to a MYC enhancer. Genome Res. 2010;20:1191–97. https://doi.org/10.1101/gr.105361.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Meyer KB, Maia A-T, O’Reilly M, Ghoussaini M, Prathalingam R, Porter-Gill P, et al. A functional variant at a prostate cancer predisposition locus at 8q24 is associated with PVT1 expression. PLoS Genet. 2011;7:e1002165 https://doi.org/10.1371/journal.pgen.1002165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Du M, Yuan T, Schilter KF, Dittmar RL, Mackinnon A, Huang X, et al. Prostate cancer risk locus at 8q24 as a regulatory hub by physical interactions with multiple genomic loci across the genome. Hum Mol Genet. 2015;24:154–66. https://doi.org/10.1093/hmg/ddu426

    Article  CAS  PubMed  Google Scholar 

  20. Aggarwal A, Unger-Saldaña K, Lewison G, Sullivan R. The challenge of cancer in middle-income countries with an ageing population: Mexico as a case study. Ecancermedicalscience. 2015;9:536 https://doi.org/10.3332/ecancer.2015.536

    Article  PubMed  PubMed Central  Google Scholar 

  21. D’Amico AV, Whittington R, Malkowicz SB, Schultz D, Kenneth B, Broderick GA, et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA. 1998;280:969–74. https://doi.org/10.1001/jama.280.11.969

    Article  PubMed  Google Scholar 

  22. Zhou J, Yu Y, Zhu A, Wang F, Kang S, Pei Y, et al. Meta-analysis of association between rs1447295 polymorphism and prostate cancer susceptibility. Oncotarget. 2017;8:67029–42. https://doi.org/10.18632/oncotarget.17627

    Article  PubMed  PubMed Central  Google Scholar 

  23. Du P, Zhu J, He C, Hu G, Li S, Ye MY, et al. The rs1447295 polymorphism in the 8q24 gene contributes to cancer risk, especially prostate cancer: a meta-analysis. Int J Clin Exp Med. 2018;11:13115–34. ISSN:1940-5901/IJCEM0080640

    CAS  Google Scholar 

  24. Li R, Qin Z, Tang J, Han P, Xing Q, Wang F, et al. Association between 8q24 gene polymorphisms and the risk of prostate cancer: a systematic review and meta-analysis. J Cancer. 2017;8:3198–211. https://doi.org/10.7150/jca.20456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang Y, Wang W, Zhang L, Zhang S, Liu G, Yu Y, et al. Association of single nucleotide polymorphism rs6983267 with the risk of prostate cancer. Oncotarget. 2016;7:25528–34. https://doi.org/10.18632/oncotarget.8186

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhang LL, Sun L, Zhu XQ, Xu Y, Yang K, Yang F, et al. rs10505474 and rs7837328 at 8q24 cumulatively confer risk of prostate cancer in Northern Han Chinese. Asian Pac J Cancer Prev. 2014;15:3129–32. https://doi.org/10.7314/apjcp.2014.15.7.3129

    Article  PubMed  Google Scholar 

  27. Beuten J, Gelfond JA, Martinez-Fierro ML, Weldon KS, Crandall AC, Rojas-Martinez A, et al. Association of chromosome 8q variants with prostate cancer risk in Caucasian and Hispanic men. Carcinogenesis. 2009;30:1372–9. https://doi.org/10.1093/carcin/bgp148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Irizarry-Ramírez M, Kittles RA, Wang X, Salgado-Montilla J, Nogueras-González GM, et al. Genetic ancestry and prostate cancer susceptibility SNPs in Puerto Rican and African American men. Prostate. 2017;77:1118–27. https://doi.org/10.1002/pros.23368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Du Z, Hopp H, Ingles SA, Huff C, Sheng X, Weaver B, et al. A genome-wide association study of prostate cancer in Latinos. Int J Cancer. 2020;146:1819–26. https://doi.org/10.1002/ijc.32525

    Article  CAS  PubMed  Google Scholar 

  30. Moreno-Estrada A, Gignoux CR, Fernandez-Lopez JC, Zakharia F, Sikora M, Contrera AV, et al. The genetics of Mexico recapitulates Native American substructure and affect biomedical traits. Science. 2014;344:1280–85. https://doi.org/10.1126/science1251688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kader KA, Sun J, Isaacs SD, Wiley KE, Yan G, Kim ST, et al. Individual and cumulative effect of prostate cancer risk-associated variants on clinicopathologic variables in 5,895 prostate cancer patients. Prostate. 2009;69:1195–205. https://doi.org/10.1002/pros.20970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nowinski S, Santaolalla A, O'Leary B, Loda M, Mirchandani A, Emberton M, et al. Systematic identification of functionally relevant risk alleles to stratify aggressive versus indolent prostate cancer. Oncotarget. 2018;9:12812–24. https://doi.org/10.18632/oncotarget.24400

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kress TR, Sabo A, Amati B. MYC: connecting selective transcriptional control to global RNA production. Nat Rev Cancer. 2015;15:593–607. https://doi.org/10.1038/nrc3984

    Article  CAS  PubMed  Google Scholar 

  34. Kalkat M, De Melo J, Hickman KA, Lourenco C, Redel C, Resetca D, et al. MYC deregulation in primary human cancers. Genes. 2017;8:151 https://doi.org/10.3390/genes8060151

    Article  CAS  PubMed Central  Google Scholar 

  35. Huang X, Zhang W, Shao Z. Association between long non-coding RNA polymorphisms and cancer risk: a meta-analysis. Biosci Rep. 2018;38:BSR20180365 https://doi.org/10.1042/BSR20180365.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zou H, Wu LX, Tan L, Shang FF, Zhou HH. Significance of single-nucleotide variants in long intergenic non-protein coding RNAs. Front Cell Dev Biol. 2020;8:347–59. https://doi.org/10.3389/fcell.2020.0034

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cui Z, Gao M, Yin Z, Yan L, Cui L. Association between lncRNA CASC8 polymorphisms and the risk of cancer: a meta-analysis. Cancer Manag Res. 2018;10:3141–8. https://doi.org/10.2147/CMAR.S170783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the patients for their selfless participation.

Author contributions

SRB: devised the project, funding acquisition, formal analysis, writing. MGEJ, FVOS, CPMB, IPDI: resources, investigation. ATAR: validation, PUK: writing - original draft preparation. GELA: writing - original draft preparation, BLM: reviewing and Editing.

Funding

This work was supported by IMSS grant no. FIS/IMSS/PROT/G15/1416.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Silva-Ramirez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva-Ramirez, B., Macías-González, E.J., Frausto-Valdes, O.S. et al. Association between genetic variations at 8q24 and prostate cancer risk in Mexican Men. Prostate Cancer Prostatic Dis 25, 507–512 (2022). https://doi.org/10.1038/s41391-021-00461-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41391-021-00461-x

Search

Quick links