Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Differential gene expression in the peripheral zone compared to the transition zone of the human prostate gland

Abstract

Gene expression profiles may lend insight into whether prostate adenocarcinoma (CaP) predominantly occurs in the peripheral zone (PZ) compared to the transition zone (TZ). From human prostates, tissue sets consisting of PZ and TZ were isolated to investigate whether there is a differential level of gene expression between these two regions of this gland. Gene expression profiling using Affymetrix Human Genome U133 plus 2.0 arrays coupled with quantitative real-time reverse transcriptase-PCR was employed. Genes associated with neurogenesis, signal transduction, embryo implantation and cell adhesion were found to be expressed at a higher level in the PZ. Those overexpressed in the TZ were associated with neurogenesis development, signal transduction, cell motility and development. Whether such differential gene expression profiles may identify molecular mechanisms responsible for susceptibility to CaP remains to be ascertained.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. McNeal JE . The prostate gland: morphology and pathobiology. Monograph Urol 1988; 9: 36–63.

    Google Scholar 

  2. Parkin DM, Bray F, Ferlay J, Pisani P . Global Cancer Statistics, 2002. CA Cancer J Clin 2005; 55: 74–108.

    Article  PubMed  Google Scholar 

  3. Grover PL, Martin FL . The initiation of breast and prostate cancer. Carcinogenesis 2002; 23: 1095–1102.

    Article  CAS  PubMed  Google Scholar 

  4. Grönberg H . Prostate cancer epidemiology. Lancet 2003; 361: 859–864.

    Article  PubMed  Google Scholar 

  5. Kirschenbaum A, Liu XH, Yao S, Narla G, Friedman SL, Martignetti JA et al. Sex steroids have differential effects on growth and gene expression in primary human prostatic epithelial cell cultures derived from the peripheral versus transition zones. Carcinogenesis 2006; 27: 216–224; doi:10.1093/carcin/bgi219.

    Article  CAS  PubMed  Google Scholar 

  6. Ragavan N, Hewitt R, Cooper LJ, Ashton KM, Hindley AC, Nicholson CM et al. CYP1B1 expression in prostate is higher in the peripheral than in the transition zone. Cancer Lett 2004; 215: 69–78.

    Article  CAS  PubMed  Google Scholar 

  7. Lexander H, Franzén B, Hirschberg D, Becker S, Hellström M, Bergman T et al. Differential protein expression in anatomical zones of the prostate. Proteomics 2005; 5: 2570–2576.

    Article  CAS  PubMed  Google Scholar 

  8. Laczkó I, Hudson DL, Freeman A, Feneley MR, Masters JR . Comparison of the zones of the human prostate with the seminal vesicle: morphology, immunohistochemistry, and cell kinetics. Prostate 2005; 62: 260–266.

    Article  PubMed  Google Scholar 

  9. German MJ, Hammiche A, Ragavan N, Tobin MJ, Fullwood NJ, Matanhelia SS et al. Infrared spectroscopy with multivariate analysis potentially facilitates the segregation of different types of prostate cell. Biophys J 2006; 90: 3783–3795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. van der Heul-Nieuwenhuijsen L, Hendriksen PJM, van der Kwast TH, Jenster G . Gene expression profiling on the human prostate zones. BJU Int 2006; 98: 886–897.

    Article  CAS  PubMed  Google Scholar 

  11. Williams JA, Martin FL, Muir GH, Grover PL, Phillips DH . Metabolic activation of carcinogens and expression of various cytochromes P450 in human prostate tissue. Carcinogenesis 2000; 21: 1683–1689.

    Article  CAS  PubMed  Google Scholar 

  12. Martin FL, Cole KJ, Muir GH, Kooiman GG, Williams JA, Sherwood RA et al. Primary cultures of prostate cells and their ability to activate carcinogens. Prostate Cancer Prostatic Dis 2002; 5: 96–104.

    Article  CAS  PubMed  Google Scholar 

  13. Daly-Burns B, Alam TN, Mackay A, Clark J, Shepherd CJ, Rizzo S et al. A conditionally immortalized cell line model for the study of human prostatic epithelial cell differentiation. Differentiation 2007; 75: 35–48.

    Article  CAS  PubMed  Google Scholar 

  14. Michos O, Panman L, Vintersten K, Beier K, Zeller R, Zuniga A . Gremlin-mediated BMP antagonism induces the epithelial-mesenchymal feedback signaling controlling metanephric kidney and limb organogenesis. Development 2004; 131: 3401–3410.

    Article  CAS  PubMed  Google Scholar 

  15. He B, Lee AY, Dadfarmay S, You L, Xu Z, Reguart N et al. Secreted frizzled-related protein 4 is silenced by hypermethylation and induces apoptosis in β-catenin-deficient human mesothelioma cells. Cancer Res 2005; 65: 743–748.

    CAS  PubMed  Google Scholar 

  16. Buhusi M, Midkiff BR, Gates AM, Richter M, Schachner M, Maness PF . Close homolog of L1 is an enhancer of integrin-mediated cell migration. J Biol Chem 2003; 278: 25024–25031.

    Article  CAS  PubMed  Google Scholar 

  17. Vanaja DK, Cheville JC, Iturria SJ, Young CYF . Transcriptional silencing of zinc finger protein 185 identified by expression profiling is associated with prostate cancer progression. Cancer Res 2003; 63: 3877–3882.

    CAS  PubMed  Google Scholar 

  18. Zhang J-S, Gong A, Young CYF . ZNF185, an actin-cytoskeleton-associated growth inhibitory LIM protein in prostate cancer. Oncogene 2007; 26: 111–122.

    Article  CAS  PubMed  Google Scholar 

  19. Aihara K, Kuroda S, Kanayama N, Matsuyama S, Tanizawa K, Horie M . A neuron-specific EGF family protein, NELL2, promotes survival or neurons through mitogen-activated protein kinases. Mol Brain Res 2003; 116: 86–93.

    Article  CAS  PubMed  Google Scholar 

  20. Nelson BR, Matsuhashi S, Lefcort F . Restricted neural epidermal growth factor-like like 2 (NELL2) expression during muscle and neuronal differentiation. Mech Dev 2002; 119S: S11–S19.

    Article  Google Scholar 

  21. DiLeone RJ, Marcus GA, Johnson MD, Kingsley DM . Efficient studies of long-distance Bmp5 gene regulation using bacterial artificial chromosomes. Proc Natl Acad Sci USA 2000; 97: 1612–1617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zuzarte V, Montero JA, Rodriguez-Leon J, Merino R, Rodrigues JC, Hurle JM . A new role for BMP5 during limb development acting through synergic activation of Smad and MAPK pathways. Dev Biol 2004; 272: 39–52.

    Article  Google Scholar 

  23. Saleem M, Adhami VM, Ahmad N, Gupta S, Mukhtar H . Prognostic significance of metastasis-associated protein S100A4 (Mts1) in prostate cancer progression and chemoprevention regimens in an autochthonous mouse model. Clin Cancer Res 2005; 11: 147–153.

    CAS  PubMed  Google Scholar 

  24. Žbánková Š, Bryndová J, Kment M, Pácha J . Expression of 11β-hydroxysteroid dehydrogenase types 1 and 2 in colorectal cancer. Cancer Lett 2004; 210: 95–100.

    Article  PubMed  Google Scholar 

  25. Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E et al. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 2001; 7: 1267–1278.

    Article  CAS  PubMed  Google Scholar 

  26. Thiébault K, Mazelin L, Pays L, Llambi F, Joly M-O, Scoazec J-Y et al. The netrin-1 receptors UNC5H are putative tumor suppressors controlling cell death commitment. Proc Natl Acad Sci USA 2003; 100: 4173–4178.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gupta S, Hussain T, MacLennan GT, Fu P, Patel J, Mukhtar H . Differential expression of S100A2 and S100A4 during progression of human prostate adenocarcinoma. J Clin Oncol 2003; 21: 106–112.

    Article  CAS  PubMed  Google Scholar 

  28. Horvath LG, Henshall SM, Kench JG, Saunders DN, Lee C-S, Golovsky D et al. Membranous expression of secreted frizzled-related protein 4 predicts for good prognosis in localized prostate cancer and inhibits PC3 cellular proliferation in vitro. Clin Cancer Res 2004; 10: 615–625.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Tracy Chaplin for technical support with the array processing. This work was funded by Rosemere Cancer Foundation (NR, MJW and FLM), Orchid Cancer Appeal (EN, SJ and Y-JL) and Cancer Research UK (Tracy Chaplin).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F L Martin.

Additional information

Supplementary Information accompanies the paper on the Prostate Cancer and Prostatic Diseases website (http://www.nature.com/pcan)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noel, E., Ragavan, N., Walsh, M. et al. Differential gene expression in the peripheral zone compared to the transition zone of the human prostate gland. Prostate Cancer Prostatic Dis 11, 173–180 (2008). https://doi.org/10.1038/sj.pcan.4500997

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.pcan.4500997

Keywords

This article is cited by

Search

Quick links