Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Signal relay by BMP antagonism controls the SHH/FGF4 feedback loop in vertebrate limb buds

Abstract

Outgrowth and patterning of the vertebrate limb are controlled by reciprocal interactions between the posterior mesenchyme (polarizing region) and a specialized ectodermal structure, the apical ectodermal ridge (AER)1. Sonic hedgehog (SHH) signalling by the polarizing region modulates fibroblast growth factor (FGF)4 signalling by the posterior AER, which in turn maintains the polarizing region (SHH/FGF4 feedback loop)2,3. Here we report that the secreted bone-morphogenetic-protein (BMP) antagonist Gremlin4 relays the SHH signal from the polarizing region to the AER. Mesenchymal Gremlin expression is lost in limb buds of mouse embryos homozygous for the limb deformity (ld) mutation, which disrupts establishment of the SHH/FGF4 feedback loop5,6,7. Grafting Gremlin-expressing cells into ld mutant limb buds rescues Fgf4 expression and restores the SHH/FGF4 feedback loop. Analysis of Shh-null mutant embryos8,9 reveals that SHH signalling is required for maintenance of Gremlin and Formin (the gene disrupted by the ld mutations)10,11. In contrast, Formin, Gremlin and Fgf4 activation are independent of SHH signalling. This study uncovers the cascade by which the SHH signal is relayed from the posterior mesenchyme to the AER and establishes that Formin-dependent activation of the BMP antagonist Gremlin is sufficient to induce Fgf4 and establish the SHH/FGF4 feedback loop.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Formin (Fmn) is a target of SHH signalling in the limb-bud mesenchyme and is essential to relay the SHH signal from the mesenchyme to the AER.
Figure 2: The BMP antagonist Gremlin (Gre) is a Fmn-dependent target of SHH signalling and is expressed by posterior-distal limb-bud mesenchymal cells.
Figure 3: Inhibition of BMP activity by Gremlin restores the SHH/FGF-4 feedback loop in ld mutant limb buds.
Figure 4: Analysis of Shh-deficient mouse limb buds9 shows that induction but not maintenance of Formin, Gremlin and Fgf4 are SHH independent.
Figure 5: Limb-bud mesenchyme to AER signalling and establishment of the SHH/FGF4 feedback loop through FMN- and GRE-mediated BMP antagonism.

Similar content being viewed by others

References

  1. Johnson,R. L. & Tabin,C. J. Molecular models for vertebrate limb development. Cell 90, 979–990 (1997).

    Article  CAS  Google Scholar 

  2. Laufer,E., Nelson,C. E., Johnson,R. L., Morgan,B. A. & Tabin,C. Sonic hedgehog and Fgf-4 act through a signalling cascade and feedback loop to integrate growth and patterning of the developing limb bud. Cell 79, 993–1003 (1994).

    Article  CAS  Google Scholar 

  3. Niswander,L., Jeffrey,S., Martin,G. R. & Tickle,C. A positive feedback loop coordinates growth and patterning in the vertebrate limb. Nature 371, 609–612 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Hsu,D., Economides,A., Wang,X., Eimon,P. & Harland,R. The Xenopus dorsalizing factor Gremlin identifies a novel family of secreted proteins that antagonise BMP activities. Mol. Cell 1, 673–83 (1998).

    Article  CAS  Google Scholar 

  5. Chan,D. C., Wynshaw-Boris,A. & Leder, P. Formin isoforms are differentially expressed in the mouse embryo and are required for normal expression of fgf-4 and shh in the limb bud. Development 121, 3151–3162 (1995).

    CAS  PubMed  Google Scholar 

  6. Haramis,A. G., Brown,J. M. & Zeller,R. The limb deformity mutation disrupts the SHH/FGF-4 feedback loop and regulation of 5′HoxD genes during limb pattern formation. Development 121, 4237–4245 (1995).

    CAS  PubMed  Google Scholar 

  7. Kuhlman,J. & Niswander,L. Limb deformity proteins: role in mesodermal induction of the apical ectodermal ridge. Development 124, 133–139 (1997).

    CAS  PubMed  Google Scholar 

  8. Chiang,C. et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383, 407–413 (1996).

    Article  ADS  CAS  Google Scholar 

  9. St-Jacques,B. et al. Sonic hedgehog signaling is essential for hair development. Curr. Biol. 8, 1058–1068 (1998).

    Article  CAS  Google Scholar 

  10. Woychik,R. P., Maas,R. L., Zeller,R., Vogt,T. F. & Leder,P. ‘Formins’: Proteins deduced from the alternative transcripts of the limb deformity gene. Nature 346, 850–853 (1990).

    Article  ADS  CAS  Google Scholar 

  11. Mass,R. L., Zeller,R., Woychik,R. P., Vogt,T. F. & Leder,P. Disruption of formin-encoding transcripts in two mutant limb deformity alleles. Nature 346, 853–855 (1990).

    Article  ADS  CAS  Google Scholar 

  12. Zuniga,A. & Zeller,R. Gli3 (Xt) and formin (ld) participate in the positioning of the polarising region and control of posterior limb-bud identity. Development 126, 13–21 (1999).

    CAS  PubMed  Google Scholar 

  13. Duprez,D., Fournier-Thibault,C. & LeDouarin,N. Sonic Hedgehog induces proliferation of committed skeletal muscle cells in the chick limb. Development 125, 495–505 (1998).

    CAS  PubMed  Google Scholar 

  14. Marigo,V., Johnson,R. L., Vortkamp,A. & Tabin,C. J. Sonic hedgehog differentially regulates expression of GLI and GLI3 during limb development. Dev. Biol. 180, 273–283 (1996).

    Article  CAS  Google Scholar 

  15. Marigo,V., Scott,M. P., Johnson,R. L., Goodrich,L. V. & Tabin,C. J. Conservation in hedgehog signaling: induction of a chicken patched homolog by Sonic hedgehog in the developing limb. Development 122, 1225–1233 (1996).

    CAS  PubMed  Google Scholar 

  16. Trumpp,A., Blundell,P. A., de la Pompa,J. L. & Zeller,R. The chicken limb deformity gene encodes nuclear proteins expressed in specific cell types during morphogenesis. Genes Dev. 6, 14–28 (1992).

    Article  CAS  Google Scholar 

  17. Zeller,R., Jackson-Grusby,L. & Leder,P. The limb deformity gene is required for apical ectodermal ridge differentiation and anterio posterior limb pattern formation. Genes Dev. 3, 1481–1492 (1989).

    Article  CAS  Google Scholar 

  18. Duprez,D. M., Kostakopoulou,K., Francis-West,P. H., Tickle,C. & Brickell,P. M. Activation of Fgf-4 and HoxD gene expression by BMP-2 expressing cells in the developing chick limb. Development 122, 1821–1828 (1996).

    CAS  PubMed  Google Scholar 

  19. Cho,K. & Blitz,I. BMPs, Smads and metalloproteases: extracellular and intracellular modes of negative regulation. Curr. Opin. Genet. Dev. 8, 443–449 (1998).

    Article  CAS  Google Scholar 

  20. Pizette,S. & Niswander,L. BMPs negatively regulate structure and function of the limb apical ectodermal ridge. Development 126, 883–894 (1999).

    CAS  PubMed  Google Scholar 

  21. McMahon,J. et al. Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. Genes Dev. 12, 1438–1452 (1998).

    Article  CAS  Google Scholar 

  22. Brunet,L., McMahon,J., McMahon,A. & Harland,R. Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science 280, 1455–1457 (1998).

    Article  ADS  CAS  Google Scholar 

  23. Lamb,T. et al. Neural induction by the secreted polypeptide noggin. Science 262, 713–718 (1993).

    Article  ADS  CAS  Google Scholar 

  24. Francis,P. H., Richardson,M. K., Brickell, P M. & tickle,C. Bone morphogenetic proteins and a signalling pathway that controls patterning in the developing chick limb. Development 120, 209–218 (1994).

    CAS  PubMed  Google Scholar 

  25. Hofmann,C., Luo,G., Balling,R. & Karsenty,G. Analysis of limb patterning in BMP-7-deficient mice. Dev. Genet. 19, 43–50 (1996).

    Article  CAS  Google Scholar 

  26. Niswander,L. & Martin,G. R. FGF-4 and BMP-2 have opposite effects on limb growth. Nature 361, 68–71 (1993).

    Article  ADS  CAS  Google Scholar 

  27. Fraidenraich,D., Lang,R. & Basilico,C. Distinct regulatory elements govern Fgf4 gene expression in the mouse blastocyst, myotome, and developing limb. Dev. Biol. 204, 197–209 (1998).

    Article  CAS  Google Scholar 

  28. Nellen,D., Burke,R., Struhl,G. & Basler,K. Direct and long-range action of a DPP morphogen gradient. Cell 85, 357–368 (1996).

    Article  CAS  Google Scholar 

  29. Lussier,M., Canoun,C., Ma,C., Sank,A. & Shuler,C. Interdigital soft tissue separation induced by retinoic acid in mouse limbs cultured in vitro. Int. J. Dev. Biol. 37, 555–564 (1993).

    CAS  PubMed  Google Scholar 

  30. Ingham,P. Transducing Hedgehog: the story so far. EMBO J. 17, 3505–3511 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Drossopoulu, M. Herlevsen and C. Tickle for advice in establishing the in vitro culturing system; T. Bouwmeester and S. Cohen for many stimulating discussions and support; C. McGuigan, B. Wagemakers and H. Goedemans for technical assistance; J. McMahon for breeding Shh-deficient mice; J. Jackson for mouse husbandry; D. Duprez, P. Brickell, H. Rohrer, R. Harland, T. Bouwmeester, S.-L. Ang and C. Niehrs for reagents; and G. Davidson, R. Dono, A. van Loon, P. Rørth and L. Panman for comments on the manuscript. This study was supported by EMBL and Utrecht University, grants from the European Community (to R.Z.), the NIH (to A.P.M.) and the Graduiertenkolleg “Experimentelle Nieren- und Kreislaufforschung” (to A.Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Zeller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zúñiga, A., Haramis, AP., McMahon, A. et al. Signal relay by BMP antagonism controls the SHH/FGF4 feedback loop in vertebrate limb buds. Nature 401, 598–602 (1999). https://doi.org/10.1038/44157

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/44157

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing