Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A possible long-lived belt of objects between Uranus and Neptune

Abstract

Recent discoveries of objects orbiting beyond Neptune1,2,3,4,5 have emphasized that our understanding of the distribution and dynamics of material in the outer Solar System is very incomplete. This trans-neptunian population—known as the Kuiper belt—is thought to act as a relatively stable reservoir of objects that could become short-period comets6,7,8,9, although there may be other regions of stability in the outer Solar System that could also supply such comets. Here I use numerical simulations to identify one such long-lived region between the orbits of Uranus and Neptune. I show that in the region 24–27AUfrom the Sun, about 0.3 per cent of an initial population of small bodies moving on low-eccentricity, low-inclination orbits could survive for the age of the Solar System. The actual existence of this hypothetical belt is not precluded by currently available observational limits, and there could be as much as 5 × 10−4 Earth masses of material populating this region—comparable to the mass of the asteroid belt between Mars and Jupiter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time survived by each test particle as a function of initial semimajor axis.
Figure 2: Results of additional simulations of the region between Uranus and Neptune.
Figure 3: The solid line marks the number of test particles remaining as a function of integration time, for those particles started in the i.

Similar content being viewed by others

References

  1. Jewitt, D. & Luu, J. X. Discovery of the candidate Kuiper belt object 1992QB1. Nature 362, 730–732 (1993).

    Article  ADS  Google Scholar 

  2. Irwin, M., Tremaine, S. & Zytkow, A. N. Asearch for slow-moving objects and the luminosity function of the Kuiper belt. Astron. J. 110, 3082–3092 (1995).

    Article  ADS  Google Scholar 

  3. Williams, I. P., O'Ceallaigh, D. P., Fitzsimmons, A. & Marsden, B. G. The slow-moving objects 1993SB and 1993SC. Icarus 116, 180–185 (1995).

    Article  ADS  Google Scholar 

  4. Jewitt, D., Luu, J. & Chen, J. The Mauna Kea-Cerro-Tololo (MKCT) Kuiper belt and Centaur survey. Astron. J. 112, 1225–1238 (1996).

    Article  ADS  Google Scholar 

  5. Cochran, A. L., Levison, H. F., Stern, S. A. & Duncan, M. J. The discovery of Halley-sized Kuiper belt objects using the Hubble Space Telescope. Astrophys. J. 455, 342–346 (1995).

    Article  ADS  Google Scholar 

  6. Duncan, M., Quinn, T. & Tremaine, S. Astrophys. J. 328, L69–L73 (1988).

    Google Scholar 

  7. Holman, M. J. & Wisdom, J. Dynamical stability in the outer solar system and the delivery of short period comets. Astron. J. 105, 1987–1999 (1993).

    Article  ADS  Google Scholar 

  8. Levison, H. F. & Duncan, M. J. The gravitational sculpting of the Kuiper belt. Astrophys. J. 406, L35–L38 (1993).

    Article  ADS  Google Scholar 

  9. Levison, H. F. & Duncan, M. J. From the Kuiper belt to Jupiter-family comets: the spatial distribution of ecliptic comets. Icarus(in the press).

  10. Gladman, B. & Duncan, M. J. On the fates of minor bodies in the outer solar system. Astron. J. 100, 1680–1693 (1990).

    Article  ADS  Google Scholar 

  11. Holman, M. in Proc. 27th Symp. on Celestial Mechanics(eds Kinoshita, H. & Nakai, H.) 116–136 (Natl Astron. Observatory of Japan, Tokyo, (1995)).

    Google Scholar 

  12. Roy, A. E. Orbital Motion(Hilger, Bristol, (1988)).

    MATH  Google Scholar 

  13. Levison, H. F. & Duncan, M. J. The long-term dynamical behavior of short-period comets. Icarus 108, 18–36 (1994).

    Article  ADS  Google Scholar 

  14. Dones, L., Levison, H. F. & Duncan, M. Completing the Inventory of the Solar System(eds Rettig, T. W. & Hahn, J. M.) 233–244 (ASP Conf. Proc., Astron. Soc. Pacif., San Francisco, (1996)).

    Google Scholar 

  15. Stern, S. A. Collision timescales in the Kuiper disk: model estimates and their implications. Astron. J. 110, 856–868 (1995).

    Article  ADS  Google Scholar 

  16. Davis, D. R. & Farinella, P. Collisional evolution of Edgeworth-Kuiper belt objects. Icarus 125, 50–60 (1997).

    Article  ADS  Google Scholar 

  17. Fernandez, J. A. & Ip, W. H. Some dynamical aspects of the accretion of Uranus and Neptune: the exchange of orbital angular momentum with planetesimals. Icarus 58, 109–120 (1984).

    Article  ADS  Google Scholar 

  18. Malhotra, R. The origin of Pluto's peculiar orbit. Nature 365, 819–821 (1993).

    Article  ADS  Google Scholar 

  19. Malhotra, R. The origin of Pluto's orbit: implications for the solar system beyond Neptune. Astron J. 110, 420–429 (1995).

    Article  ADS  Google Scholar 

  20. Morbidelli, A. & Valsecchi, G. B. Neptune scattered planetesimals could have sculpted the primordial Edgeworth-Kuiper belt. Icarus(in the press).

  21. Duncan, M. J., Levison, H. F. & Budd, S. M. The dynamical structure of the Kuiper belt. Astron. J. 110, 3073–3081 (1996).

    Article  ADS  Google Scholar 

  22. Tremaine, S. in Baryonic Dark Matter(eds Lynden-Bell, D. & Gilmore, G.) 37–65 (Kluwer, Boston, (1990).

    Book  Google Scholar 

  23. Kowal, C. T. Asolar system survey. Icarus 77, 118–123 (1989).

    Article  ADS  Google Scholar 

  24. Weissman, P. R. & Levison, H. F. The size distribution of cometary nuclei. Lunar Planet. Sci. 27, 1409 (1996).

    ADS  Google Scholar 

  25. Kresak, L. Mass content and mass distribution of the asteroid system. Bull. Astron. Inst. Czech. 28, 65–82 (1977).

    ADS  CAS  Google Scholar 

  26. Morrison, D. Asteroid sizes and albedos. Icarus 31, 185–220 (1977).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I thank N. Murray and S. Tremaine for discussions, S. Dermott and H. Levison for reviews of the manuscript, and J. Wisdom for computer time for the simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Holman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holman, M. A possible long-lived belt of objects between Uranus and Neptune. Nature 387, 785–788 (1997). https://doi.org/10.1038/42890

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/42890

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing