Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Metal ion catalysis during splicing of premessenger RNA

Abstract

The removal of intervening sequences from premessenger RNA is essential for the expression of most eukaryotic genes. The spliceosome ribonucleoprotein complex catalyses intron removal by two sequential phosphotransesterification reactions1, but the catalytic mechanisms are unknown. It has been proposed that two divalent metal ions may mediate catalysis of both reaction steps, activating the 2′- or 3′-hydroxyl groups for nucleophilic attack and stabilizing the 3′-oxyanion leaving groups by direct coordination2. Here we show that in splicing reactions with a precursor RNA containing a 3′-sulphur substitution at the 5′ splice site, interaction between metal ion and leaving group is essential for catalysis of the first reaction step. This establishes that the spliceosome is a metalloenzyme and demonstrates a direct parallel with the catalytic strategy used by the self-splicing group I intron from Tetrahymena3. In contrast, 3′-sulphur substitution at the 3′ splice site provides no evidence for a metal ion–leaving group interaction in the second reaction step, suggesting that the two steps of splicing proceed by different catalytic mechanisms and therefore in distinct active sites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Modified adenovirus pre-mRNA substrates for in vitro splicing.
Figure 2: A 3′-thio substitution at the 5′ splice site results in a metal specificity switch.
Figure 3: A 3′-thio substitution at the 5′ splice site results in a metal specificity switch.
Figure 4: The 3′-thio modification does not inhibit spliceosome assembly when Mg2+ is present as the sole divalent metal ion.
Figure 5: A catalytic metal ion is present in the spliceosomal active site for the first step of pre-mRNA splicing.
Figure 6: Mg2+ supports in vitro splicing of a pre-mRNA with a 3′-thio substitution at the 3′ splice site.

Similar content being viewed by others

References

  1. Krämer, A. in Pre-mRNA Processing(ed. Lamond, A.) 35–64 (Landes, Austin, (1995)).

    Book  Google Scholar 

  2. Steitz, T. A. & Steitz, J. A. Ageneral two-metal-ion mechanism for catalytic RNA. Proc. Natl Acad. Sci. USA 90, 6498–6502 (1993).

    Article  ADS  CAS  Google Scholar 

  3. Piccirilli, J. A., Vyle, J. S., Caruthers, M. H. & Cech, T. R. Metal ion catalysis in the Tetrahymena ribozyme reaction. Nature 361, 85–88 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Cosstick, R. & Vyle, J. S. Synthesis and properties of dithymidine phosphate analogues containing 3′-thiothymidine. Nucleic Acids Res. 18, 829–835 (1990).

    Article  CAS  Google Scholar 

  5. Jaffe, E. K. & Cohn, M. Divalent cation-dependent stereospecificity of adenosine 5′-O-(2-thiotriphosphate) in the hexokinase and pyruvate kinase reactions: The absolute stereochemistry of the diastereomers of adenosine 5′-O-(2-thiotriphosphate). J. Biol. Chem. 253, 4823–4825 (1978).

    CAS  PubMed  Google Scholar 

  6. Jaffe, E. K. & Cohn, M. Diastereomers of the nucleoside phosphorothioates as probes of the structure of the metal nucleotide substrates and of the nucleotide binding site of yeast hexokinase. J. Biol. Chem. 254, 10839–10845 (1979).

    CAS  Google Scholar 

  7. Pecoraro, V. L., Hermes, J. D. & Cleland, W. W. Stability constants of Mg2+ and Cd2+ complexes of adenine nucleotides and thionucleotides and rate constants for formation and dissociation of MgATP and MgADP. Biochemistry 23, 5262–5271 (1984).

    Article  CAS  Google Scholar 

  8. Sigel, R. K. O., Song, B. & Sigel, H. Stabilities and structures of metal ion complexes of adenosine 5′-O-thiomonophosphate (AMPS2−) in comparison with those of its parent nucleotide (AMP2−) in aqueous solution. J. Am. Chem. Soc. 119, 744–755 (1997).

    Article  CAS  Google Scholar 

  9. Moore, M. J. & Sharp, P. A. Site-specific modification of pre-mRNA: The 2′-hydroxyl groups at the splice sites. Science 256, 992–997 (1992).

    Article  ADS  CAS  Google Scholar 

  10. Solnick, D. Trans splicing of mRNA precursors. Cell 42, 157–164 (1985).

    Article  CAS  Google Scholar 

  11. Pearson, R. G. Acids and bases. Science 151, 172–177 (1966).

    Article  ADS  CAS  Google Scholar 

  12. Dantzmann, C. L. & Kiessling, L. L. Reactivity of a 2′-thio nucleotide analog. J. Am. Chem. Soc. 118, 11715–11719 (1996).

    Article  Google Scholar 

  13. Burgin, A. B., Huizenga, B. N. & Nash, H. A. Anovel suicide substrate for DNA topoisomerases and site-specific recombinases. Nucleic Acids Res. 23, 2973–2979 (1995).

    Article  CAS  Google Scholar 

  14. Seiwert, S. D. & Steitz, J. A. Uncoupling two functions of the U1 small nuclear ribonucleoprotein particle during in vitro splicing. Mol. Cell. Biol. 13, 3135–3145 (1993).

    Article  CAS  Google Scholar 

  15. Vyle, J. S., Connolly, B. A., Kemp, D. & Cosstick, R. Sequence- and strand-specific cleavage in oligodeoxyribonucleotides and DNA containing 3′-thiothymidine. Biochemsitry 31, 3012–3018 (1992).

    Article  CAS  Google Scholar 

  16. Weinstein, L. B., Earnshaw, D. J., Cosstick, R. & Cech, T. R. Synthesis and characterization of an RNA dinucleotide containing a 3′-S-phosphorothiolate linkage. J. Am. Chem. Soc. 118, 10341–10350 (1996).

    Article  CAS  Google Scholar 

  17. Konarska, M. M. & Sharp, P. A. Electrophoretic separation of complexes involved in the splicing of precursors to mRNAs. Cell 46, 845–855 (1986).

    Article  CAS  Google Scholar 

  18. Reyes, J. L., Kois, P., Konforti, B. B. & Konarska, M. M. The canonical GU dinucleotide at the 5′ splice site is recognized by p220 of the U5 snRNP within the spliceosome. RNA 2, 213–225 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Narlikar, G. J., Gopalakrishnan, V., McConnell, T. S., Usman, N. & Herschlag, D. Use of binding energy by an RNA enzyme for catalysis by positioning and substrate destabilization. Proc. Natl Acad. Sci. USA 92, 3668–3672 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Aebi, M., Hornig, H., Padgett, R. A., Reiser, J. & Weissmann, C. Sequence requirements for splicing of higher eukaryotic nuclear pre-mRNA. Cell 47, 555–565 (1986).

    Article  CAS  Google Scholar 

  21. Tarn, W.-Y. Site-specific substitution of inosine at the terminal positions of a pre-mRNA intron: Implications for the configuration of the terminal base interaction. Biochimie(in the press).

  22. Anderegg, G. in Comprehensive Coordination Chemistry: The Synthesis, Reactions, Properties and Applications of Coordination Compounds(eds Wilkinson, G., Gillard, R. D. & McCleverty, J. A.) 777–792 (Pergamon, Oxford, (1987)).

    Google Scholar 

  23. Freemont, P. S., Friedman, J. M., Beese, L. S., Sanderson, M. R. & Steitz, T. A. Cocrystal structure ofanediting complex of Klenow fragment with DNA. Proc. Natl Acad. Sci. USA 85, 8924–8928 (1988).

    Article  ADS  CAS  Google Scholar 

  24. Moore, M. J. & Sharp, P. A. Evidence for two active sites in the spliceosome provided by stereochemistry of pre-mRNA splicing. Nature 365, 364–368 (1993).

    Article  ADS  CAS  Google Scholar 

  25. Sontheimer, E. J. & Steitz, J. A. The U5 and U6 small nuclear RNAs as active site components of the spliceosome. Science 262, 1989–1996 (1993).

    Article  ADS  CAS  Google Scholar 

  26. Query, C. C., Moore, M. J. & Sharp, P. A. Branch nucleophile selection in pre-mRNA splicing: evidence for the bulged duplex model. Genes Dev. 8, 587–597 (1994).

    Article  CAS  Google Scholar 

  27. Dignam, J. D., Lebovitz, R. M. & Roeder, R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11, 1475–1489 (1983).

    Article  CAS  Google Scholar 

  28. Abmayr, S. M., Reed, R. & Maniatis, T. Identification of a functional mammalian spliceosome containing unspliced pre-mRNA. Proc. Natl Acad. Sci. USA 85, 7216–7220 (1988).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Hamm and L. Munishkina for oligonucleotide synthesis, W.-Y. Tarn for communicating unpublished results, members of our laboratory for advice and discussions, and J.Curley, M. Hamm and A. Yoshida for comments on the manuscript. E.J.S. was supported in part by a postdoctoral fellowship from the Jane Coffin Childs Memorial Fund for Medical Research. E.J.S. and S.S. are research associates and J.A.P. is an assistant investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Author notes

  1. Correspondence and requests for materials should be addressed to J.A.P.

    Authors

    Rights and permissions

    Reprints and permissions

    About this article

    Cite this article

    Sontheimer, E., Sun, S. & Piccirilli, J. Metal ion catalysis during splicing of premessenger RNA. Nature 388, 801–805 (1997). https://doi.org/10.1038/42068

    Download citation

    • Received:

    • Accepted:

    • Issue Date:

    • DOI: https://doi.org/10.1038/42068

    This article is cited by

    Comments

    By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

    Search

    Quick links

    Nature Briefing

    Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

    Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing