Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Genetic tagging of humpback whales

Abstract

The ability to recognize individual animals has substantially increased our knowledge of the biology and behaviour of many taxa1. However, not all species lend themselves to this approach, either because of insufficient phenotypic variation or because tag attachment is not feasible. The use of genetic markers (‘tags’) represents a viable alternative to traditional methods of individual recognition, as they are permanent and exist in all individuals. We tested the use of genetic markers as the primary means of identifying individuals in a study of humpback whales in the North Atlantic Ocean. Analysis of six microsatellite loci2,3 among 3,060 skin samples collected throughout this ocean allowed the unequivocal identification of individuals. Analysis of 692 ‘recaptures’, identified by their genotype, revealed individual local and migratory movements of up to 10,000 km, limited exchange among summer feeding grounds, and mixing in winter breeding areas, and also allowed the first estimates of animal abundance based solely on genotypic data. Our study demonstrates that genetic tagging is not only feasible, but generates data (for example, on sex) that can be valuable when interpreting the results of tagging experiments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Numbers and distribution of recaptures.

Similar content being viewed by others

References

  1. Hammond, P. S., Mizroch, S. A. & Donovan, G. P. Individual recognition of Cetaceans: Use of Photo-identification and Other Techniques to Estimate Population Parameters(International Whaling Commission, Cambridge, (1990).

    Google Scholar 

  2. Tautz, D. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res. 17, 6463–6471 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Weber, J. L. & May, P. E. Abundant class of human DNA polymorphism which can be typed using the polymerase chain reaction. Am. J. Hum. Genet. 44, 388–396 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Palsbøll, P. J., Larsen, F. & Sigurd Hansen, E. Sampling of skin biopsies from free-ranging large cetaceans in West Greenland: Development of new biopsy tips and bolt designs. Rep. Int. Whaling Commiss. Spec. Iss. 13, 71–79 (1991).

    Google Scholar 

  5. Clapham, P. J., Palsbøll, P. J. & Mattila, D. K. High-energy behaviors in humpback whales as a source of sloughed skin for molecular analysis. Mar. Mamm. Sci. 9, 213–220 (1993).

    Article  Google Scholar 

  6. Maniatis, T., Fritsch, E. F. & Sambrock, J. Molecular Cloning. A Laboratory Manual(Cold Spring Harbour Laboratory Press, New York, (1982).

    Google Scholar 

  7. Bérubé, M. & Palsbøll, P. J. Identification of sex in Cetaceans by multiplexing with three ZFX and ZFY specific primers. Mol. Ecol. 5, 283–287 (1996).

    Article  PubMed  Google Scholar 

  8. Clapham, P. J. & Palsbøll, P. J. Molecular analysis of paternity shows promiscous mating in female humpback whales (Megaptera novaeangliae, Borowski). Proc. R. Soc. Lond. B 264, 95–98 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Palsbøll, P. J., Bérubé, M., Larsen, A. H. & Jørgensen, H. Primers for the amplification of tri- and tetramer microsatellite loci in cetaceans. Mol. Ecol.(in the press).

  10. Katona, S. K. & Beard, J. A. Population size, migrations, and feeding aggregations of the humpback whale, Megaptera novaeangliae, in the western North Atlantic Ocean. Rep. Int. Whaling Commiss. Spec. Iss. 12, 295–305 (1990).

    Google Scholar 

  11. Clapham, P. J.et al. Seasonal occurrence and annual return of humpback whales in the southern Gulf of Maine. Can. J. Zool. 71, 440–443 (1993).

    Article  Google Scholar 

  12. Palsbøll, P. J.et al. Distribution of mtDNA haplotypes in North Atlantic humpback whales: the influence of behaviour on population structure. Mar. Ecol. Prog. Ser. 116, 1–10 (1995).

    Article  ADS  Google Scholar 

  13. Larsen, A. H., Sigurjónsson, J., Øien, N., Vikingsson, G. & Palsbøll, P. J. Population genetic analysis of nuclear and mitochondrial loci in skin biopsies collected from Central and northeastern North Atlantic humpback whales (Megaptera novaeangliae): population identity and migratory destinations. Proc. R. Soc. Lond. B 263, 1611–1618 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Stevick, P. T., Øien, N. & Mattila, D. K. Migration of a humpback whale (Megaptera novaeangliae) between Norway and the West Indies. Mar. Mamm. Sci.(in the press).

  15. Clapham, P. J., Mattila, D. K. & Palsbøll, P. J. High-latitude-area composition of humpback whale groups in Samana Bay: further evidence for panmixis in the North Atlantic population. Can. J. Zool. 71, 1065–1066 (1993).

    Article  Google Scholar 

  16. Mattila, D. K., Clapham, P. J., Katona, S. K. & Stone, G. S. Population composition of humpback whales, Megaptera novaeangliae, on Silver Bank, 1984. Can. J. Zool. 67, 281–285 (1989).

    Article  Google Scholar 

  17. Seber, G. A. F. The Estimation of Animal Abundance and Related Parameters(Charles Griffin, London, (1982).

    MATH  Google Scholar 

  18. Barlow, J. & Clapham, P. J. Anew birth-interval approach to estimating demographic parameters of humpback whales. Ecology 78, 535–546 (1997).

    Article  Google Scholar 

  19. Clapham, P. J., Bérubé, M. & Mattila, D. K. Sex ratio of the Gulf of Maine humpback whale population. Mar. Mamm. Sci. 11, 227–231 (1995).

    Article  Google Scholar 

  20. Roy, M. S., Geffen, E., Smith, D., Ostrander, E. A. & Wayne, R. K. Patterns of differentiation and hybridization in North American wolflike canids, revealed by analysis of microsatellite loci. Mol. Biol. Evol. 11, 553–570 (1994).

    CAS  PubMed  Google Scholar 

  21. Amos, B., Schlötterer, C. & Tautz, D. Social structure of pilot whales revealed by analytical DNA profiling. Science 260, 670–672 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Tautz, D. & Renz, M. Simple sequences are ubiquitous repetitive components of eukaryote genomes. Nucleic Acids Res. 12, 4127–4138 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lambertsen, R. H. Abiopsy system for large whales and its use for cytogenetics. J. Mamm. 68, 443–445 (1987).

    Article  Google Scholar 

  24. Morin, P. A. & Woodruff, D. S. in Paternity in Primates: Genetic Tests and Theories(eds Martin, R. D., Dixon, A. F. & Wickings, E. J.) 63–81 (Karger, Basel, (1992).

    Google Scholar 

  25. Constable, J. J., Packer, C., Collins, D. A. & Pusey, A. E. Nuclear DNA from primate dung. Nature 373, 393 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Gerloff, U.et al. Amplification of hypervariable simple sequence repeats (microsatellites) from excremental DNA of wild living bonobos (Pan paniscus). Mol. Ecol. 4, 515–518 (1995).

    Article  CAS  Google Scholar 

  27. Paetkau, D. & Strobeck, C. Microsatellite analysis of genetic variation in black bear populations. Mol. Ecol. 3, 489–495 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Katona, S. K. & Whitehead, H. P. Identifying humpback whales using their natural markings. Polar Rec. 20, 439–444 (1981).

    Article  Google Scholar 

Download references

Acknowledgements

Most samples were collected during the international collaborative project (Year of the North Atlantic Humpback Wahle (YONAH). We thank T. H. Andersen, P. Arctander, C. Berchok, I. Bonnelly, M. Fredholm, J. Jensen, K. B. Pedensen, P. Raahaùge, J. Robbins, O. Vasquez and E. Widén for their support and assistance. Funds were obtained from the Commission for Scientific Research in Greenland, the Greenland Home Rule, the EU Biotechnology Program, the Danish and Norwegian Research Councils, the US National Marine Fisheries Service. The US National Fish and Wildlife Foundation, the Department of Fisheries and Oceans, the International Whaling Commission, the US State Department, the Aage V. Jensen Charity Foundation, the Dorr Foundation, the American–Scandinavian Foundation, the Exxon Corporation, and Feodor Pitcairn.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per J. Palsbøll.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palsbøll, P., Allen, J., Bérube´, M. et al. Genetic tagging of humpback whales. Nature 388, 767–769 (1997). https://doi.org/10.1038/42005

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/42005

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing