Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

RNA interference

Abstract

A conserved biological response to double-stranded RNA, known variously as RNA interference (RNAi) or post-transcriptional gene silencing, mediates resistance to both endogenous parasitic and exogenous pathogenic nucleic acids, and regulates the expression of protein-coding genes. RNAi has been cultivated as a means to manipulate gene expression experimentally and to probe gene function on a whole-genome scale.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Double-stranded RNA can be introduced experimentally to silence target genes of interest.
Figure 2: Dicer and RISC (RNA-induced silencing complex).
Figure 3: Transitive RNAi.
Figure 4: Small interfering RNAs versus small temporal RNAs.
Figure 5: A model for the mechanism of RNAi.

References

  1. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    ADS  CAS  Article  PubMed  Google Scholar 

  2. Guo, S. & Kemphues, K. J. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81, 611–620 (1995).

    CAS  Article  PubMed  Google Scholar 

  3. Timmons, L. & Fire, A. Specific interference by ingested dsRNA. Nature 395, 854 (1998).

    ADS  CAS  PubMed  Article  Google Scholar 

  4. van der Krol, A. R., Mur, L. A., de Lange, P., Mol, J. N. & Stuitje, A. R. Inhibition of flower pigmentation by antisense CHS genes: promoter and minimal sequence requirements for the antisense effect. Plant Mol. Biol. 14, 457–466 (1990).

    CAS  Article  PubMed  Google Scholar 

  5. Napoli, C. A., Lemieux, C., & Jorgensen, R. Introduction of a chimeric chalcone synthetase gene in Petunia results in reversible cosuppression of homologous genes in trans. Plant Cell 2, 279–289 (1990).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. Jorgensen, R. Altered gene expression in plants due to trans interactions between homologous genes. Trends Biotechnol. 8, 340–344 (1990).

    CAS  Article  PubMed  Google Scholar 

  7. Jorgensen, R. A., Cluster, P. D., English, J., Que, Q. & Napoli, C. A. Chalcone synthase cosuppression phenotypes in petunia flowers: comparison of sense vs. antisense constructs and single-copy vs. complex T-DNA sequences. Plant Mol. Biol. 31, 957–973 (1996).

    CAS  Article  PubMed  Google Scholar 

  8. Elmayan, T. & Vaucheret, H. Single copies of a strongly expressed 35S-driven transgene undergo post-transcriptional silencing. Plant J. 9, 787–797 (1996).

    CAS  Article  Google Scholar 

  9. Que, Q., Wang, H. Y., English, J. & Jorgensen, R. The frequency and degree of cosuppression by sense chalcone synthetase transgenes are dependent on promoter strength and are reduced by premature nonsense codons in the transgene coding sequence. Plant Cell 9, 1357–1368 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Ruiz, M. T., Voinnet, O. & Baulcombe, D. C. Initiation and maintenance of virus-induced gene silencing. Plant Cell 10, 937–946 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Angell, S. M. & Baulcombe, D. C. Consistent gene silencing in transgenic plants expressing a replicating potato virus X RNA. EMBO J. 16, 3675–3684 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Dougherty, W. G. et al. RNA-mediated virus resistance in transgenic plants: exploitation of a cellular pathway possibly involved in RNA degradation. Mol. Plant Microbe Interact. 7, 544–552 (1994).

    CAS  PubMed  Article  Google Scholar 

  13. Kumagai, M. H. et al. Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc. Natl Acad. Sci. USA 92, 1679–1683 (1995).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. Bernstein, E., Denli, A. M. & Hannon, G. J. The rest is silence. RNA 7, 1509–1521 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Romano, N. & Macino, G. Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol. Microbiol. 6, 3343–3353 (1992).

    CAS  PubMed  Article  Google Scholar 

  16. Fire, A., Albertson, D., Harrison, S. W. & Moerman, D. G. Production of antisense RNA leads to effective and specific inhibition of gene expression in C. elegans muscle. Development 113, 503–514 (1991).

    CAS  PubMed  Google Scholar 

  17. Dernburg, A. F., Zalevsky, J., Colaiacovo, M. P. & Villeneuve, A. M. Transgene-mediated cosuppression in the C. elegans germ line. Genes Dev. 14, 1578–1583 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Pal-Bhadra, M., Bhadra, U. & Birchler, J. A. Cosuppression in Drosophila: gene silencing of Alcohol dehydrogenase by white-Adh transgenes is Polycomb dependent. Cell 90, 479–490 (1997).

    CAS  PubMed  Article  Google Scholar 

  19. Dalmay, T., Hamilton, A., Rudd, S., Angell, S. & Baulcombe, D. C. An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 101, 543–553 (2000).

    CAS  PubMed  Article  Google Scholar 

  20. de Carvalho, F. et al. Suppression of beta-1,3-glucanase transgene expression in homozygous plants. EMBO J. 11, 2595–2602 (1992).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Jones, L., Ratcliff, F. & Baulcombe, D. C. RNA-directed transcriptional gene silencing in plants can be inherited independently of the RNA trigger and requires Met1 for maintenance. Curr. Biol. 11, 747–757 (2001).

    CAS  Article  PubMed  Google Scholar 

  22. Wassenegger, M., Heimes, S., Riedel, L. & Sanger, H. L. RNA-directed de novo methylation of genomic sequences in plants. Cell 76, 567–576 (1994).

    CAS  Article  PubMed  Google Scholar 

  23. Mette, M. F., Aufsatz, W., van der Winden, J., Matzke, M. A. & Matzke, A. J. Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J. 19, 5194–5201 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Pal-Bhadra, M., Bhadra, U. & Birchler, J. A. RNAi related mechanisms affect both transcriptional and posttranscriptional transgene silencing in Drosophila. Mol Cell 9, 315–327 (2002).

    CAS  Article  PubMed  Google Scholar 

  25. Tabara, H. et al. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99, 123–132 (1999).

    CAS  Article  PubMed  Google Scholar 

  26. Dudley, N. R., Labbe, J. C. & Goldstein, B. Using RNA interference to identify genes required for RNA interference. Proc. Natl Acad. Sci. USA 99, 4191–4196 (2002).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862 (1993).

    CAS  PubMed  Article  Google Scholar 

  28. Reinhart, B. J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–906 (2000).

    ADS  CAS  Article  PubMed  Google Scholar 

  29. Kennerdell, J. R. & Carthew, R. W. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95, 1017–1026 (1998).

    CAS  Article  PubMed  Google Scholar 

  30. Tuschl, T., Zamore, P. D., Lehmann, R., Bartel, D. P. & Sharp, P. A. Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev. 13, 3191–3197 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Hammond, S. M., Bernstein, E., Beach, D. & Hannon, G. J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293–296 (2000).

    ADS  CAS  PubMed  Article  Google Scholar 

  32. Hamilton, A. J. & Baulcombe, D. C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950–952 (1999).

    CAS  PubMed  Article  Google Scholar 

  33. Zamore, P. D., Tuschl, T., Sharp, P. A. & Bartel, D. P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25–33 (2000).

    CAS  PubMed  Article  Google Scholar 

  34. Elbashir, S. M., Martinez, J., Patkaniowska, A., Lendeckel, W. & Tuschl, T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 20, 6877–6888 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Filippov, V., Solovyev, V., Filippova, M. & Gill, S. S. A novel type of RNase III family proteins in eukaryotes. Gene 245, 213–221 (2000).

    CAS  Article  PubMed  Google Scholar 

  36. Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001).

    ADS  CAS  PubMed  Article  Google Scholar 

  37. Ketting, R. F. et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 15, 2654–2659 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Knight, S. W. & Bass, B. L. A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 293, 2269–2271 (2001).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Grishok, A. et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106, 23–34 (2001).

    CAS  PubMed  Article  Google Scholar 

  40. Blaszczyk, J. et al. Crystallographic and modeling studies of RNase III suggest a mechanism for double-stranded RNA cleavage. Structure (Camb.) 9, 1225–1236 (2001).

    CAS  Article  Google Scholar 

  41. Nykanen, A., Haley, B. & Zamore, P. D. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107, 309–321 (2001).

    CAS  PubMed  Article  Google Scholar 

  42. Hammond, S. M., Boettcher, S., Caudy, A. A., Kobayashi, R. & Hannon, G. J. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293, 1146–1150 (2001).

    CAS  PubMed  Article  Google Scholar 

  43. Bohmert, K. et al. AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J. 17, 170–180 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Hammond, S. M., Caudy, A. A. & Hannon, G. J. Post-transcriptional gene silencing by double-stranded RNA. Nature Rev. Genet. 2, 110–119 (2001).

    CAS  Article  PubMed  Google Scholar 

  45. Grishok, A., Tabara, H. & Mello, C. C. Genetic requirements for inheritance of RNAi in C. elegans. Science 287, 2494–2497 (2000).

    ADS  CAS  PubMed  Article  Google Scholar 

  46. Ketting, R. F., Haverkamp, T. H., van Luenen, H. G. & Plasterk, R. H. mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 99, 133–141 (1999).

    CAS  Article  PubMed  Google Scholar 

  47. Parrish, S. & Fire, A. Distinct roles for RDE-1 and RDE-4 during RNA interference in Caenorhabditis elegans. RNA 7, 1397–1402 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Catalanotto, C., Azzalin, G., Macino, G. & Cogoni, C. Involvement of small RNAs and role of the qde genes in the gene silencing pathway in Neurospora. Genes Dev. 16, 790–795 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. Palauqui, J. C., Elmayan, T., Pollien, J. M. & Vaucheret, H. Systemic acquired silencing: transgene-specific post-transcriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. EMBO J. 16, 4738–4745 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. Sijen, T. et al. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107, 465–476 (2001).

    CAS  PubMed  Article  Google Scholar 

  51. Schiebel, W. et al. Isolation of an RNA-directed RNA polymerase-specific cDNA clone from tomato. Plant Cell 10, 2087–2101 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Mourrain, P. et al. Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101, 533–542 (2000).

    CAS  Article  PubMed  Google Scholar 

  53. Cogoni, C. & Macino, G. Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature 399, 166–169 (1999).

    ADS  CAS  PubMed  Article  Google Scholar 

  54. Smardon, A. et al. EGO-1 is related to RNA-directed RNA polymerase and functions in germ-line development and RNA interference in C. elegans. Curr. Biol. 10, 169–178 (2000).

    CAS  Article  PubMed  Google Scholar 

  55. Lipardi, C., Wei, Q. & Paterson, B. M. RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell 107, 297–307 (2001).

    CAS  Article  PubMed  Google Scholar 

  56. Fabian, E., Jones, L. & Baulcombe, D. C. Spreading of RNA targeting and DNA methylation in RNA silencing requires transcription of the target gene and a putative RNA dependent RNA polymerase. Plant Cell 14, 857–867 (2002).

    Article  CAS  Google Scholar 

  57. Voinnet, O., Vain, P., Angell, S. & Baulcombe, D. C. Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA. Cell 95, 177–187 (1998).

    CAS  Article  PubMed  Google Scholar 

  58. Mallory, A. C. et al. HC-Pro suppression of transgene silencing eliminates the small RNAs but not transgene methylation or the mobile signal. Plant Cell 13, 571–583 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. Winston, W. M., Molodowitch, C. & Hunter, C. P. Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science 295, 2456–2459 (2002).

    ADS  CAS  Article  PubMed  Google Scholar 

  60. Cogoni, C. & Macino, G. Posttranscriptional gene silencing in Neurospora by a RecQ DNA helicase. Science 286, 2342–2344 (1999).

    CAS  Article  PubMed  Google Scholar 

  61. Wu-Scharf, D., Jeong, B., Zhang, C. & Cerutti, H. Transgene and transposon silencing in Chlamydomonas reinhardtii by a DEAH-box RNA helicase. Science 290, 1159–1162 (2000).

    ADS  CAS  Article  PubMed  Google Scholar 

  62. Tijsterman, M., Ketting, R. F., Okihara, K. L., Sijen, T. & Plasterk, R. H. RNA helicase MUT-14-dependent gene silencing triggered in C. elegans by short antisense RNAs. Science 295, 694–697 (2002).

    ADS  CAS  Article  PubMed  Google Scholar 

  63. Domeier, M. E. et al. A link between RNA interference and nonsense-mediated decay in Caenorhabditis elegans. Science 289, 1928–1931 (2000).

    ADS  CAS  Article  PubMed  Google Scholar 

  64. Martienssen, R. A. & Colot, V. DNA methylation and epigenetic inheritance in plants and filamentous fungi. Science 293, 1070–1074 (2001).

    CAS  PubMed  Article  Google Scholar 

  65. Furner, I. J., Sheikh, M. A. & Collett, C. E. Gene silencing and homology-dependent gene silencing in Arabidopsis: genetic modifiers and DNA methylation. Genetics 149, 651–662 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Fagard, M., Boutet, S., Morel, J. B., Bellini, C. & Vaucheret, H. AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. Proc. Natl Acad. Sci. USA 97, 11650–11654 (2000).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. Voinnet, O., Lederer, C. & Baulcombe, D. C. A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana. Cell 103, 157–167 (2000).

    CAS  Article  PubMed  Google Scholar 

  68. Baulcombe, D. Viruses and gene silencing in plants. Arch. Virol. Suppl. 15, 189–201 (1999).

    CAS  PubMed  Google Scholar 

  69. Jacobsen, S. E., Running, M. P. & Meyerowitz, E. M. Disruption of an RNA helicase/RNAse III gene in Arabidopsis causes unregulated cell division in floral meristems. Development 126, 5231–5243 (1999).

    CAS  PubMed  Google Scholar 

  70. Kataoka, Y., Takeichi, M. & Uemura, T. Developmental roles and molecular characterization of a Drosophila homologue of Arabidopsis Argonaute1, the founder of a novel gene superfamily. Genes Cells 6, 313–325 (2001).

    CAS  Article  PubMed  Google Scholar 

  71. Cox, D. N. et al. A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev. 12, 3715–3727 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. Morel, J. B. et al. Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional gene silencing and virus resistance. Plant Cell 14, 629–639 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. Moussian, B., Schoof, H., Haecker, A., Jurgens, G. & Laux, T. Role of the ZWILLE gene in the regulation of central shoot meristem cell fate during Arabidopsis embryogenesis. EMBO J. 17, 1799–1809 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. Hutvagner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838 (2001).

    CAS  PubMed  Article  Google Scholar 

  75. Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

    CAS  Article  PubMed  Google Scholar 

  76. Olsen, P. H. & Ambros, V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol. 216, 671–680 (1999).

    CAS  PubMed  Article  Google Scholar 

  77. Slack, F. J. et al. The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol. Cell 5, 659–669 (2000).

    CAS  Article  PubMed  Google Scholar 

  78. Ha, I., Wightman, B. & Ruvkun, G. A bulged lin-4/lin-14 RNA duplex is sufficient for Caenorhabditis elegans lin-14 temporal gradient formation. Genes Dev. 10, 3041–3050 (1996).

    CAS  Article  PubMed  Google Scholar 

  79. Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    ADS  CAS  PubMed  Article  Google Scholar 

  80. Paddison, P. J., Caudy, A. A., Bernstein, E., Hannon, G. J. & Conklin, D. S. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 16, 948–958 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 294, 853–858 (2001).

    ADS  CAS  PubMed  Article  Google Scholar 

  82. Lau, N. C., Lim, L. P., Weinstein, E. G. & Bartel, D. P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858–862 (2001).

    ADS  CAS  PubMed  Article  Google Scholar 

  83. Lee, R. C. & Ambros, V. An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862–864 (2001).

    ADS  CAS  PubMed  Article  Google Scholar 

  84. Mourelatos, Z. et al. miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev. 16, 720–728 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. Lai, E. C. Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nature Genet. 30, 363–364 (2002).

    CAS  PubMed  Article  Google Scholar 

  86. Wianny, F. & Zernicka-Goetz, M. Specific interference with gene function by double-stranded RNA in early mouse development. Nature Cell Biol. 2, 70–75 (2000).

    CAS  PubMed  Article  Google Scholar 

  87. Svoboda, P., Stein, P., Hayashi, H. & Schultz, R. M. Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference. Development 127, 4147–4156 (2000).

    CAS  PubMed  Google Scholar 

  88. Gil, J. & Esteban, M. Induction of apoptosis by the dsRNA-dependent protein kinase (PKR): mechanism of action. Apoptosis 5, 107–114 (2000).

    CAS  PubMed  Article  Google Scholar 

  89. Clarke, P. A. & Mathews, M. B. Interactions between the double-stranded RNA binding motif and RNA: definition of the binding site for the interferon-induced protein kinase DAI (PKR) on adenovirus VA RNA. RNA 1, 7–20 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Smith, N. A. et al. Total silencing by intron-spliced hairpin RNAs. Nature 407, 319–320 (2000).

    ADS  CAS  PubMed  Article  Google Scholar 

  91. Tavernarakis, N., Wang, S. L., Dorovkov, M., Ryazanov, A. & Driscoll, M. Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes. Nature Genet. 24, 180–183 (2000).

    CAS  PubMed  Article  Google Scholar 

  92. Kennerdell, J. R. & Carthew, R. W. Heritable gene silencing in Drosophila using double-stranded RNA. Nature Biotechnol. 18, 896–898 (2000).

    CAS  Article  Google Scholar 

  93. LaCount, D. J., Bruse, S., Hill, K. L. & Donelson, J. E. Double-stranded RNA interference in Trypanosoma brucei using head-to-head promoters. Mol. Biochem. Parasitol. 111, 67–76 (2000).

    CAS  Article  PubMed  Google Scholar 

  94. Shi, H. et al. Genetic interference in Trypanosoma brucei by heritable and inducible double-stranded RNA. RNA 6, 1069–1076 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. Wang, Z., Morris, J. C., Drew, M. E. & Englund, P. T. Inhibition of Trypanosoma brucei gene expression by RNA interference using an integratable vector with opposing T7 promoters. J. Biol. Chem. 275, 40174–40179 (2000).

    CAS  Article  PubMed  Google Scholar 

  96. Paddison, P. J., Caudy, A. A. & Hannon, G. J. Stable suppression of gene expression by RNAi in mammalian cells. Proc. Natl Acad. Sci. USA 99, 1443–1448 (2002).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. Brummelkamp, T. R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 21, 21 (2002).

    Google Scholar 

  98. Sui, G. et al. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl Acad. Sci. USA 99, 5515–5520 (2002).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  99. Meissner, W., Rothfels, H., Schafer, B. & Seifart, K. Development of an inducible pol III transcription system essentially requiring a mutated form of the TATA-binding protein. Nucleic Acids Res. 29, 1672–1682 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. Ohkawa, J. & Taira, K. Control of the functional activity of an antisense RNA by a tetracycline-responsive derivative of the human U6 snRNA promoter. Hum. Gene Ther. 11, 577–585 (2000).

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

I thank members of the Hannon laboratory for critical reading of the manuscript; J. Duffy for help in preparation of the figures; D. Baulcombe, M. Tijsterman, R. Carthew and S. Prasanth for providing the images for Fig. 1; fellow investigators who granted permission to discuss unpublished observations; and C. Mello and C. Sherr for providing motive and opportunity, respectively, for our early work on RNAi. G.J.H. is a Rita Allen Foundation scholar and is supported by an Innovator Award from the U.S. Army Breast Cancer Research Program. This work was supported in part by a grant from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory J. Hannon.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hannon, G. RNA interference. Nature 418, 244–251 (2002). https://doi.org/10.1038/418244a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/418244a

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing