Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Plasticity and avalanche behaviour in microfracturing phenomena

Abstract

Inhomogeneous materials, such as plaster or concrete, subjected to an external elastic stress display sudden movements owing to the formation and propagation of microfractures. Studies of acoustic emission from these systems reveal power-law behaviour1. Similar behaviour in damage propagation has also been seen in acoustic emission resulting from volcanic activity2 and hydrogen precipitation in niobium3. It has been suggested that the underlying fracture dynamics in these systems might display self-organized criticality4, implying that long-ranged correlations between fracture events lead to a scale-free cascade of ‘avalanches’. A hierarchy of avalanche events is also observed in a wide range of other systems, such as the dynamics of random magnets5 and high-temperature superconductors6 in magnetic fields, lung inflation7 and seismic behaviour characterized by the Gutenberg–Richter law8. The applicability of self-organized criticality to microfracturing has been questioned9,10, however, as power laws alone are not unequivocal evidence for it. Here we present a scalar model of microfracturing which generates power-law behaviour in properties related to acoustic emission, and a scale-free hierarchy of avalanches characteristic of self-organized criticality. The geometric structure of the fracture surfaces agrees with that seen experimentally. We find that the critical steady state exhibits plastic macroscopic behaviour, which is commonly observed in real materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The damage for a system of size L = 64.
Figure 2: The I–V characteristics of the present model for different values of the parameter a (see text).
Figure 3: a, The number of broken bonds s as a function of time.
Figure 4: The distribution of energy bursts, related to the experimentally observed acoustic emission.
Figure 5: The distribution of quiescent intervals Δt between two avalanches in the plastic state.

Similar content being viewed by others

References

  1. Petri, A., Paparo, G., Vespignani, A., Alippi, A. & Costantini, M. Experimental evidence for critical dynamics in microfracturing processes. Phys. Rev. Lett. 73, 3423–3426 (1994).

    Article  ADS  CAS  Google Scholar 

  2. Diodati, P., Marchesoni, F. & Piazza, S. Acoustic emission from volcanic rocks: an example of self-organized criticality. Phys. Rev. Lett. 67, 2239–2242 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Cannelli, G., Cantelli, R. & Cordero, F. Self-organized criticality of the fracture processes associated with hydrogen precipitation in niobium by acoustic emission. Phys. Rev. Lett. 70, 3923–3926 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Bak, P., Tang, C. & Wiesenfeld, K. Self-organized criticality: an explanation of 1/f noise. Phys. Rev. Lett. 59, 381–384 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Cote, P. J. & Meisel, L. V. Self-organized criticality and the Barkhausen effect. Phys. Rev. Lett. 67, 1334–1337 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Field, S., Witt, J., Nori, F. & Ling, X. Superconducting vortex avalanches. Phys. Rev. Lett. 74, 1206–1209 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Suki, B., Barabási, A. -L., Hantos, Z., Peták, F. & Stanley, H. E. Avalanches and power-law behaviour in lung inflation. Nature 368, 615–618 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Gutenberg, B. & Richter, C. F. Frequency of earthquakes in California. Bull. Seismol. Soc. Am. 34, 185–188 (1944).

    Google Scholar 

  9. Sornette, D. Power laws without parameter tuning: an alternative to self-organized criticality. Phys. Rev. Lett. 72, 2306 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Cannelli, G., Cantelli, R. & Cordero, F. Reply to Sornette D., ‘Power laws without parameter tuning: an alternative to self-organized criticality’. Phys. Rev. Lett. 72, 2307 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Herrmann, H. J. & Roux, S. (eds) Statistical Models for the Fracture of Disordered Media (North Holland, Amsterdam, 1990).

    Google Scholar 

  12. Sornette, D. & Vanneste, C. Dynamics and memory effects in rupture of thermal fuse networks. Phys. Rev. Lett. 68, 612–615 (1992).

    Article  ADS  CAS  Google Scholar 

  13. Miltenberger, P., Sornette, D. & Vanneste, C. Fault self-organization as optimal random paths selected by critical spatiotemporal dynamics of earthquakes. Phys. Rev. Lett. 71, 3604–3607 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Tzschichholz, F. & Herrmann, H. J. Simulations of pressure fluctuations and acoustic emission in hydraulic fracturing. Phys. Rev. E 51, 1961–1970 (1995).

    Article  ADS  CAS  Google Scholar 

  15. Landau, L. D. & Lifschitz, E. M. Theory of Elasticity (Pergamon, New York, 1960).

    Google Scholar 

  16. Wilshire, B. & Owen, D. R. J. Engineering Approaches to High Temperature Design (Pineridge, Swansea, UK, 1983).

    Google Scholar 

  17. De Arcangelis, L., Redner, S. & Herrmann, H. J. Arandom fuse model for breaking processes. J. Phys. (Paris) 46, L585–L590 (1985).

    Article  Google Scholar 

  18. Herrmann, H. J., Kertész, J. & de Arcangeliis, L. Fractal shapes of deterministic cracks. Europhys. Lett. 10, 514–519 (1991).

    Google Scholar 

  19. De Arcangelis, L. & Herrmann, H. J. Scaling and multiscaling laws in random fuse networks. Phys. Rev. B 39, 2678–2684 (1989).

    Article  ADS  CAS  Google Scholar 

  20. Press, W. H. & Teukolski, S. A. Multigrid methods for boundary value problems. Comput. Phys. 5, 154–519 (1991).

    Google Scholar 

  21. Chen, W. F. Plasticity in Reinforced Concrete (McGraw-Hill, New York, 1982).

    Google Scholar 

  22. Stroeven, P. in Interfaces and Cementous Composites (ed. Maso, J. C.) 187–196 (Spoon, London, 1993).

    Google Scholar 

  23. Stroeven, P. Some observations on microcracking in concrete subjected to various loading regimes. Eng. Frac. Mech. 35, 775–782 (1990).

    Article  Google Scholar 

  24. Tillemans, H. J. & Herrmann, H. J. Simulating deformations of granular solids under shear. Physica A 217, 261–288 (1995).

    Article  ADS  Google Scholar 

  25. Okuzono, T. & Kawasaki, K. Intermittent flow behavior of random foams: a computer experiment on foam rheology. Phys. Rev. E 51, 1246–1253 (1995).

    Article  ADS  CAS  Google Scholar 

  26. Caldarelli, G., Di Tolla, F. & Petri, A. Self organization and annealed disorder in fracturing process. Phys. Rev. Lett. 77, 2503–2506 (1996).

    Article  ADS  CAS  Google Scholar 

  27. Sahimi, M. & Arbabi, S. Scaling laws for fracture of heterogeneous materials and rock. Phys. Rev. Lett. 77, 3689–3692 (1996).

    Article  ADS  CAS  Google Scholar 

  28. Omori, F. J. Coll. Sci. Imper. Univ. Tokyo 7, 111 (1894).

    Google Scholar 

  29. Sornette, D. Sweeping of an instability: an alternative to self-organized criticality to get powerlaws with parameter tuning. J. Phys. I France 4, 209–221 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Caldarelli, R. Cuerno, J. Kertész, H. J. Herrmann, K. B. Lauritsen, A. Petri, C. Rebbi and P. Stroeven for suggestions and discussions. The Center for Polymer Studies is supported by NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Zapperi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zapperi, S., Vespignani, A. & Stanley, H. Plasticity and avalanche behaviour in microfracturing phenomena. Nature 388, 658–660 (1997). https://doi.org/10.1038/41737

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/41737

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing