Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides

Abstract

After the evolution of oxygen-producing cyanobacteria at some time before 2.7 billion years ago1, oxygen production on Earth is thought to have depended on the availability of nutrients in the oceans, such as phosphorus (in the form of orthophosphate). In the modern oceans, a significant removal pathway for phosphorus occurs by way of its adsorption onto iron oxide deposits2,3. Such deposits were thought to be more abundant in the past when, under low sulphate conditions, the formation of large amounts of iron oxides resulted in the deposition of banded iron formations4,5. Under these circumstances, phosphorus removal by iron oxide adsorption could have been enhanced. Here we analyse the phosphorus and iron content of banded iron formations to show that ocean orthophosphate concentrations from 3.2 to 1.9 billion years ago (during the Archaean and early Proterozoic eras) were probably only 10–25% of present-day concentrations. We suggest therefore that low phosphorus availability should have significantly reduced rates of photosynthesis and carbon burial, thereby reducing the long-term oxygen production on the early Earth—as previously speculated4—and contributing to the low concentrations of atmospheric oxygen during the late Archaean and early Proterozoic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Element ratios in BIFs and calculated dissolved phosphate concentrations.
Figure 2: Simplified phosphate and iron cycle model of the Archaean and early Proterozoic.
Figure 3: Modelled mean ocean phosphate concentration [Pd] from equation (4).

Similar content being viewed by others

References

  1. Brocks, J. J., Logan, G. A., Buick, R. & Summons, R. E. Archean molecular fossils and the early rise of eukaryotes. Science 285, 1033–1036 (1999)

    Article  CAS  Google Scholar 

  2. Berner, R. A. Phosphate removal from sea water by adsorption on volcanogenic ferric oxides. Earth Planet. Sci. Lett. 18, 77–86 (1973)

    Article  ADS  CAS  Google Scholar 

  3. Wheat, C. G., Feely, R. A. & Mottl, M. J. Phosphate removal by oceanic hydrothermal processes: An update of the phosphorus budget in the oceans. Geochim. Cosmochim. Acta 19, 3593–3608 (1996)

    Article  ADS  Google Scholar 

  4. Holland, H. D. The Chemical Evolution of the Atmosphere and Oceans (Princeton Univ. Press, New York, 1984)

    Google Scholar 

  5. Canfield, D. E. A new model for Proterozoic ocean chemistry. Nature 396, 450–453 (1998)

    Article  ADS  CAS  Google Scholar 

  6. Stumm, W. & Morgan, J. J. Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters (Wiley & Sons, New York, 1981)

    Google Scholar 

  7. Feely, R. A., Trefry, J. H., Lebon, G. T. & German, C. R. The relationship between P/Fe and V/Fe ratios in hydrothermal precipitates and dissolved phosphate in seawater. Geophys. Res. Lett. 25, 2253–2256 (1998)

    Article  ADS  CAS  Google Scholar 

  8. Beukes, N. J., Klein, C., Kaufman, A. J. & Hayes, J. M. Carbonate petrography, kerogen distribution, and carbon and oxygen isotope variations in an early Proterozoic transition from limestone to iron-formation deposition, Transvaal Supergroup, South Africa. Econ. Geol. 85, 663–690 (1990)

    Article  CAS  Google Scholar 

  9. Kaufman, A. J., Hayes, J. M. & Klein, C. Primary and diagenetic controls of isotopic compositions of iron-formation carbonates. Geochim. Cosmochim. Acta 54, 3461–3473 (1990)

    Article  ADS  CAS  Google Scholar 

  10. Walker, J. C. G. Suboxic diagenesis in banded iron formations. Nature 309, 340–342 (1984)

    Article  ADS  CAS  Google Scholar 

  11. Schaller, T., Morford, J., Emerson, S. R. & Feely, R. A. Oxyanions in metalliferous sediments: Tracers for paleoseawater metal concentrations. Geochim. Cosmochim. Acta 63, 2243–2254 (2000)

    Article  ADS  Google Scholar 

  12. Compton, J. et al. in Marine Authigenesis; From Global to Microbial (eds Glenn, C. R., Prevot, L. L. & Lucas, J.) 21–33 (Society for Sedimentary Geology, Tulsa, 2000)

    Book  Google Scholar 

  13. Filippelli, G. M. Carbon and phosphorus cycling in anoxic sediments of the Saanich Inlet, British Columbia. Mar. Geol. 174, 307–321 (2001)

    Article  ADS  CAS  Google Scholar 

  14. Van Cappellen, P. & Ingall, E. D. Redox stabilization of the atmosphere and oceans by phosphorus-limited marine productivity. Science 271, 493–496 (1996)

    Article  ADS  CAS  Google Scholar 

  15. Anderson, L. D., Delaney, M. L. & Faul, K. L. Carbon to phosphorus ratios in sediments: Implications for nutrient cycling. Glob. Biogeochem. Cycles 15, 65–79 (2001)

    Article  ADS  CAS  Google Scholar 

  16. Roden, E. E. & Edmonds, J. W. Phosphate mobilization in iron-rich anaerobic sediments: Microbial Fe(III) oxide reduction versus iron-sulfide formation. Archiv. Hydrobiol. 139, 347–378 (1997)

    CAS  Google Scholar 

  17. Fralick, P. & Barrett, T. J. in Sedimentary Facies Analysis; A Tribute to the Research and Teaching of Harold G. Reading (ed. Plint, A. G.) 137–156 (Special Publication of the International Association of Sedimentologists, Oxford, 1995)

    Google Scholar 

  18. de Ronde, C. E. J., Channer, D. M., De, R., Faure, K., Bray, C. J. & Spooner, E. T. C. Fluid chemistry of Archean seafloor hydrothermal vents: Implication for the composition of circa 3.2 Ga seawater. Geochim. Cosmochim. Acta 61, 4025–4042 (1997)

    Article  ADS  CAS  Google Scholar 

  19. Klein, C. & Beukes, N. J. Geochemistry and sedimentology of a facies transition from limestone to iron-formation deposition in the early Proterozoic Transvaal Supergroup, South Africa. Econ. Geol. 84, 1733–1774 (1989)

    Article  CAS  Google Scholar 

  20. Karhu, J. A. & Holland, H. D. Carbon isotopes and the rise of atmospheric oxygen. Geology 24, 867–870 (1996)

    Article  ADS  CAS  Google Scholar 

  21. Shaffer, G. A model of biogeochemical cycling of phosphorous, nitrogen, oxygen, and sulphur in the ocean: One step toward a global climate model. J. Geophys. Res. 94, 1979–2004 (1989)

    Article  ADS  CAS  Google Scholar 

  22. Lenton, T. M. & Watson, A. J. Redfield revisited 2. What regulates the oxygen content of the atmosphere? Glob. Biogeochem. Cycles 14, 249–268 (2000)

    Article  ADS  CAS  Google Scholar 

  23. Holland, H. D. The Chemistry of the Atmosphere and Oceans (Wiley, New York, 1978)

    Google Scholar 

  24. Canfield, D. E., Habicht, K. S. & Thamdrup, B. The archean sulfur cycle and the early history of atmospheric oxygen. Science 288, 658–661 (2000)

    Article  ADS  CAS  Google Scholar 

  25. Des Marais, D. J. Isotopic evolution of the biogeochemical carbon cycle during the Proterozoic eon. Org. Geochem. 27, 185–193 (1997)

    Article  CAS  Google Scholar 

  26. Sleep, N. H. & Zahnle, K. Carbon dioxide cycling and implications for climate on ancient Earth. J. Geophys. Res. 106, 1373–1399 (2001)

    Article  ADS  CAS  Google Scholar 

  27. Des Marais, D. J., Strauss, H., Summons, R. E. & Hayes, J. M. Carbon isotope evidence from the stepwise oxidation of the Proterozoic environment. Nature 359, 605–609 (1992)

    Article  ADS  CAS  Google Scholar 

  28. Isley, A. E. & Abbott, D. H. Plume-related mafic volcanism and the deposition of banded iron formation. J. Geophys. Res. 104, 15461–15477 (1999)

    Article  ADS  CAS  Google Scholar 

  29. Anbar, A. D. & Knoll, A. H. Trace metal limitation of primary production 1.85–1.25 Ga. (American Geophysical Union Fall Meeting, 1999); available at http://www.agu.org/meetings/fm99top.html

  30. Berner, E. K. & Berner, R. A. The Global Water Cycle, Geochemistry and Environment (Prentice Hall, New Jersey, 1994)

    MATH  Google Scholar 

Download references

Acknowledgements

We thank J. Hayes and T. Lenton for comments and suggestions. This work was funded by the Danish National Research Foundation (Danmarks Grundforskingsfond) and the Danish National Science Foundation (SNF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald E. Canfield.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bjerrum, C., Canfield, D. Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides. Nature 417, 159–162 (2002). https://doi.org/10.1038/417159a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/417159a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing