Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms

Abstract

Subcellular localization of nitric oxide (NO) synthases with effector molecules is an important regulatory mechanism for NO signalling1. In the heart, NO inhibits L-type Ca2+ channels2 but stimulates sarcoplasmic reticulum (SR) Ca2+ release3,4,5, leading to variable effects on myocardial contractility. Here we show that spatial confinement of specific NO synthase isoforms regulates this process. Endothelial NO synthase (NOS3) localizes to caveolae6,7,8, where compartmentalization with β-adrenergic receptors and L-type Ca2+ channels9 allows NO to inhibit β-adrenergic-induced inotropy8,10. Neuronal NO synthase (NOS1), however, is targeted to cardiac SR11. NO stimulation of SR Ca2+ release via the ryanodine receptor (RyR) in vitro3, 4 suggests that NOS1 has an opposite, facilitative effect on contractility. We demonstrate that NOS1-deficient mice have suppressed inotropic response, whereas NOS3-deficient mice have enhanced contractility, owing to corresponding changes in SR Ca2+ release. Both NOS1−/− and NOS3−/− mice develop age-related hypertrophy, although only NOS3−/− mice are hypertensive. NOS1/3−/− double knockout mice have suppressed β-adrenergic responses and an additive phenotype of marked ventricular remodelling. Thus, NOS1 and NOS3 mediate independent, and in some cases opposite, effects on cardiac structure and function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Haemodynamic response to β-adrenergic stimulation.
Figure 2: Myocyte response to β-adrenergic stimulation.
Figure 3: Age-related alterations in left ventricular architecture.

Similar content being viewed by others

References

  1. Fang, M. et al. Dexras1: a G protein specifically coupled to neuronal nitric oxide synthase via CAPON. Neuron 28, 183–193 (2000).

    Article  CAS  Google Scholar 

  2. Mery, P. F., Pavoine, C., Belhassen, L., Pecker, F. & Fischmeister, R. Nitric oxide regulates cardiac Ca2+ current. Involvement of cGMP-inhibited and cGMP-stimulated phosphodiesterases through guanylyl cyclase activity. J. Biol. Chem. 268, 26286–26295 (1993).

    CAS  PubMed  Google Scholar 

  3. Xu, L., Eu, J. P., Meissner, G. & Stamler, J. S. Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science 279, 234–237 (1998).

    Article  ADS  CAS  Google Scholar 

  4. Eu, J. P., Sun, J., Xu, L., Stamler, J. S. & Meissner, G. The skeletal muscle calcium release channel: Coupled O2 sensor and NO signaling functions. Cell 102, 499–509 (2000).

    Article  CAS  Google Scholar 

  5. Petroff, M. G. et al. Endogenous nitric oxide mechanisms mediate the stretch dependence of Ca2+ release in cardiomyocytes. Nature Cell Biol. 3, 867–873 (2001).

    Article  CAS  Google Scholar 

  6. Feron, O., Saldana, F., Michel, J. B. & Michel, T. The endothelial nitric-oxide synthase-caveolin regulatory cycle. J. Biol. Chem. 273, 3125–3128 (1998).

    Article  CAS  Google Scholar 

  7. Carcia-Cardena, G. et al. Dissecting the interaction between nitric oxide synthase (NOS) and caveolin: Functional significance of the NOS caveolin binding domain in vivo. J. Biol. Chem. 272, 25437–25440 (1997).

    Article  Google Scholar 

  8. Hare, J. M. et al. Contribution of caveolin protein abundance to augmented nitric oxide signaling in conscious dogs with pacing-induced heart failure. Circ. Res. 86, 1085–1092 92000).

    Article  Google Scholar 

  9. Schwencke, C. et al. Compartmentation of cyclic adenosine 3′,5′-monophosphate signaling in caveolae. Mol. Endocrinol. 13, 1061–1070 (1999).

    CAS  PubMed  Google Scholar 

  10. Hare, J. M., Givertz, M. M., Creager, M. A. & Colucci, W. S. Increased sensitivity to nitric oxide synthase inhibition in patients with heart failure: Potentiation of β-adrenergic inotropic responsiveness. Circulation 97, 161–166 (1998).

    Article  CAS  Google Scholar 

  11. Xu, K. Y., Huso, D. L., Dawson, T., Bredt, D. S. & Becker, L. C. NO synthase in cardiac sarcoplasmic reticulum. Proc. Natl Acad. Sci. USA 96, 657–662 (1999).

    Article  ADS  CAS  Google Scholar 

  12. Varghese, P. et al. β(3)-adrenoceptor deficiency blocks nitric oxide-dependent inhibition of myocardial contractility. J. Clin. Invest. 106, 697–703 (2000).

    Article  CAS  Google Scholar 

  13. Hare, J. M., Kass, D. A. & Stamler, J. S. The physiological response to cardiovascular ‘orphan’ G protein-coupled receptor agonists. Nature Med. 5, 1241–1242 (1999).

    Article  CAS  Google Scholar 

  14. Gyurko, R., Kuhlencordt, P., Fishman, M. C. & Huang, P. L. Modulation of mouse cardiac function in vivo by eNOS and ANP. Am. J. Physiol. Heart Circ. Physiol. 278, H971–H981 (2000).

    Article  CAS  Google Scholar 

  15. Cheng, H. J. et al. Upregulation of functional β(3)-adrenergic receptor in the failing canine myocardium. Circ. Res. 89, 599–606 (2001).

    Article  ADS  CAS  Google Scholar 

  16. Schmidt, A. G. et al. Cardiac-specific overexpression of calsequestrin results in left ventricular hypertrophy, depressed force-frequency relation and pulsus alternans in vivo. J. Mol. Cell. Cardiol. 32, 1735–1744 (2000).

    Article  CAS  Google Scholar 

  17. Zhai, J. et al. Cardiac-specific overexpression of a superinhibitory pentameric phospholamban mutant enhances inhibition of cardiac function in vivo. J. Biol. Chem. 275, 10538–10544 (2000).

    Article  CAS  Google Scholar 

  18. Molkentin, J. D. et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93, 215–228 (1998).

    Article  CAS  Google Scholar 

  19. Yang, X. P. et al. Endothelial nitric oxide gene knockout mice: cardiac phenotypes and the effect of angiotensin-converting enzyme inhibitor on myocardial ischemia/reperfusion injury. Hypertension 34, 24–30 (1999).

    Article  CAS  Google Scholar 

  20. Verdecchia, P. et al. Adverse prognostic significance of concentric remodeling of the left ventricle in hypertensive patients with normal left ventricular mass. J. Am. Coll. Cardiol. 1925, 871–878 (1995).

    Article  Google Scholar 

  21. Topol, E. J., Traill, T. A. & Fortuin, N. J. Hypertensive hypertrophic cardiomyopathy of the elderly. N. Engl. J. Med. 312, 277–283 (1985).

    Article  CAS  Google Scholar 

  22. Kanai, A. J. et al. Identification of a neuronal nitric oxide synthase in isolated cardiac mitochondria using electrochemical detection. Proc. Natl Acad. Sci. USA 98, 14126–14131 (2001).

    Article  ADS  CAS  Google Scholar 

  23. Kobzik, L., Reid, M. B., Bredt, D. S. & Stamler, J. S. Nitric oxide in skeletal muscle. Nature 372, 546–548 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Brenman, J. E. et al. Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and α1-syntrophin mediated by PDZ domains. Cell 84, 757–767 (1996).

    Article  CAS  Google Scholar 

  25. Brenman, J. E., Chao, D. S., Xia, H., Aldape, K. & Bredt, D. S. Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy. Cell 82, 743–752 (1995).

    Article  CAS  Google Scholar 

  26. Liu, L. et al. A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature 410, 490–494 (2001).

    Article  ADS  CAS  Google Scholar 

  27. Stamler, J. S., Lamas, S. & Fang, F. C. Nitrosylation: the prototypic redox-based signaling mechanism. Cell 106, 675–683 (2001).

    Article  CAS  Google Scholar 

  28. Moncada, S. A. The L-arginine-nitric oxide pathway. N. Engl. J. Med. 329, 2002–2012 (1993).

    Article  CAS  Google Scholar 

  29. Son, H. et al. Long-term potentiation is reduced in mice that are doubly mutant in endothelial and neuronal nitric oxide synthase. Cell 87, 1015–1023 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the NIH, the American Heart Association, and the American Federation for Aging Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua M. Hare.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barouch, L., Harrison, R., Skaf, M. et al. Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature 416, 337–339 (2002). https://doi.org/10.1038/416337a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/416337a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing