Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum information processing with atoms and photons

Abstract

Quantum information processors exploit the quantum features of superposition and entanglement for applications not possible in classical devices, offering the potential for significant improvements in the communication and processing of information. Experimental realization of large-scale quantum information processors remains a long-term vision, as the required nearly pure quantum behaviour is observed only in exotic hardware such as individual laser-cooled atoms and isolated photons. But recent theoretical and experimental advances suggest that cold atoms and individual photons may lead the way towards bigger and better quantum information processors, effectively building mesoscopic versions of 'Schrödinger's cat' from the bottom up.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Optical parametric down-conversion.
Figure 2: A crystal of five atomic beryllium ions (small white dots at centre) confined in a radio-frequency ion trap.
Figure 3: Schematic of an optical lattice.
Figure 4: Optical lattice potentials.
Figure 5: Scheme for a scalable ion trap and optical-lattice quantum computer.
Figure 6: Atom–photon quantum network.
Figure 7: Single-atom cavity-QED experiment.
Figure 8: Pair of rubidium vapour cells used for storage and entanglement.

References

  1. 1

    Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423; 623–656 (1948).

    MathSciNet  MATH  Google Scholar 

  2. 2

    Benioff, P. The computer as a physical system: a microscopic quantum mechanical model of computers as represented by Turing machines. J. Stat. Phys. 22, 563–591 (1980).

    ADS  MathSciNet  MATH  Google Scholar 

  3. 3

    Benioff, P. Quantum mechanical Hamiltonian models of Turing machines that dissipate no energy. Phys. Rev. Lett. 48, 1581–1585 (1982).

    ADS  MathSciNet  Google Scholar 

  4. 4

    Feynman, R. Simulating physics with computers. J. Theor. Phys. 21, 467–488 (1982).

    MathSciNet  Google Scholar 

  5. 5

    Feynman, R. P. There's plenty of room at the bottom. Eng. Sci. February 1960 issue (produced by the CalTech Office of Public Relations) (1960); also available at 〈http://www.zyvex.com/nanotech/feynman.html〉.

  6. 6

    Landauer, R. in Proc. Drexel-4 Symp. Quantum Nonintegrability (eds Feng, D. H. & Hu, B.-L.) 44–53 (International Press, Boston, 1997).

    Google Scholar 

  7. 7

    Jozsa, R. in The Geometric Universe (ed. Huggett, S. et al.) 369–379 (Oxford Univ. Press, Oxford, 1998); preprint quant-ph/9707034 (Entanglement and quantum computation) at http://xxx.lanl.gov (1997).

    Google Scholar 

  8. 8

    DiVincenzo, D. The physical implementation of quantum computation. Fortschr. Phys. 48, 771–783 (2000).

    MATH  Google Scholar 

  9. 9

    Special issue on experimental proposals for quantum computation. Fortschr. Phys. 48 (2000).

  10. 10

    DiVincenzo, D. Two-bit gates are universal for quantum computation. Phys. Rev. A 51, 1015–1022 (1995).

    ADS  CAS  PubMed  Google Scholar 

  11. 11

    Lloyd, S. Almost any quantum logic gate is universal. Phys. Rev. Lett. 75, 346–349 (1995).

    ADS  CAS  PubMed  Google Scholar 

  12. 12

    Einstein, A. Podolsky, B. & Rosen, N. Can quantum-mechanical description of reality be considered complete? Phys. Rev. 47, 777–780 (1935).

    ADS  CAS  MATH  Google Scholar 

  13. 13

    Kahn, D. The Codebreakers: The Story of Secret Writing (Macmillan, New York, 1967).

    Google Scholar 

  14. 14

    Bennett, C. & Brassard, G. Quantum cryptography: public key distribution and coin tossing. Proc. IEEE Int. Conf. Comp. Syst. Signal Proc. 11, 175–179 (1984).

    MATH  Google Scholar 

  15. 15

    Wiesner, S. Conjugate coding. Sigact News 15, 78–88 (1983).

    MATH  Google Scholar 

  16. 16

    Bennett, C. Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–2124 (1992).

    ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  17. 17

    Franson, J. & Ilves, H. Quantum cryptography using optical fibers. Appl. Opt. 33, 2949–2954 (1994).

    ADS  CAS  PubMed  MATH  Google Scholar 

  18. 18

    Marand, C. & Townsend, P. Quantum key distribution over distances as long as 30 km. Opt. Lett. 20, 1695–1697 (1995).

    ADS  CAS  PubMed  Google Scholar 

  19. 19

    Muller, A., Zbinden, H. & Gisin, N. Quantum cryptography over 23 km in installed under-lake telecom fiber. Europhys. Lett. 33, 335–339 (1996).

    ADS  CAS  Google Scholar 

  20. 20

    Hughes, R. J., Morgan, G. L. & Peterson, C. G. Quantum key distribution over a 48km optical fibre network. J. Mod. Opt. 47, 533–547 (2000).

    ADS  Google Scholar 

  21. 21

    Ekert, A. K. Quantum cryptography based on Bell's theorem. Phys. Rev. Lett. 67, 661–663 (1991).

    ADS  MathSciNet  CAS  MATH  Google Scholar 

  22. 22

    Jennewein, T., Simon, C., Weihs, G., Weinfurter, H. & Zeilinger, A. Quantum cryptography with entangled photons. Phys. Rev. Lett. 84, 4729–4732 (2000).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Naik, D. S., Peterson, C. G., White, A. G., Berglund, A. J. & Kwiat, P. G. Entangled state quantum cryptography: eavesdropping on the Ekert protocol. Phys. Rev. Lett. 84, 4733–4736 (2000).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Tittel, W., Brendel, J., Zbinden, H. & Gisin, N. Quantum cryptography using entangled photons in energy-time Bell states. Phys. Rev. Lett. 84, 4737–4740 (2000).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Kwiat, P. G., Waks, E., White, A. G., Appelbaum, I. & Eberhard, P. H. Ultrabright source of polarization-entangled photons. Phys. Rev. A 60, 773–776 (1999).

    ADS  Google Scholar 

  26. 26

    Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).

    ADS  MathSciNet  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  27. 27

    Braunstein, S. L. A fun talk on teleportation. 〈http://www.informatics.bangor.ac.uk/~schmuel/tport.html〉 (5 February 1995).

  28. 28

    Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).

    ADS  CAS  MATH  Google Scholar 

  29. 29

    Boschi, D., Branca, S., De Martini, F., Hardy, L. & Popescu, S. Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998).

    ADS  MathSciNet  CAS  MATH  Google Scholar 

  30. 30

    Braunstein, S. L. & Kimble, H. J. A posteriori teleportation. Nature 394, 840–841 (1998).

    ADS  CAS  Google Scholar 

  31. 31

    Bouwmeester, D. et al. Reply to 'A posteriori teleportation' by S. L. Braunstein and H. J. Kimble. Nature 394, 841 (1998).

    ADS  Google Scholar 

  32. 32

    Furusawa, A. et al. Unconditional quantum teleportation. Science 282, 706–709 (1998).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Schrödinger, E. The present situation in quantum mechanics. Naturwissenschaften 23, 807–812; 823–828; 844–849 (1935).

    ADS  MATH  Google Scholar 

  34. 34

    Deutsch, D. Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400, 97–117 (1985).

    ADS  MathSciNet  MATH  Google Scholar 

  35. 35

    Shor, P. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comp. 26, 1484–1509 (1997).

    MathSciNet  MATH  Google Scholar 

  36. 36

    Rivest, R., Shamir, A. & Adleman, L. A method for obtaining digital signatures and public-key cryptosystems. Commun. Assoc. Comput. Mach. 21, 120–126 (1978).

    MathSciNet  MATH  Google Scholar 

  37. 37

    Grover, L. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997).

    ADS  CAS  Google Scholar 

  38. 38

    Shor, P. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, 2493–2496 (1995).

    ADS  Google Scholar 

  39. 39

    Steane, A. Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996).

    ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  40. 40

    Preskill, J. Battling decoherence: the fault-tolerant quantum computer. Phys. Today 52, 24–30 (1999).

    Google Scholar 

  41. 41

    Cirac, I. & Zoller, P. Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995).

    ADS  CAS  Google Scholar 

  42. 42

    Steane, A. The ion trap quantum information processor. Appl. Phys. B 64, 623–642 (1997).

    ADS  CAS  Google Scholar 

  43. 43

    Wineland, D. et al. Experimental issues in coherent quantum manipulation of trapped atomic ions. J. Res. Natl Inst. Stand. Tech. 103, 259–328 (1998).

    CAS  Google Scholar 

  44. 44

    Sørensen, A. & Mølmer, K. Quantum computation with ions in thermal motion. Phys. Rev. Lett. 82, 1971–1975 (1999).

    ADS  Google Scholar 

  45. 45

    Blatt, R. & Zoller, P. Quantum jumps in atomic systems. Eur. J. Phys. 9, 250 (1988).

    CAS  Google Scholar 

  46. 46

    Monroe, C., Meekhof, D. M., King, B. E., Itano, W. M. & Wineland, D. J. Demonstration of a universal quantum logic gate. Phys. Rev. Lett. 75, 4714–4717 (1995).

    ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  47. 47

    Sackett, C. et al. Experimental entanglement of four particles. Nature 404, 256–259 (2000).

    ADS  CAS  Google Scholar 

  48. 48

    Turchette, Q. A. et al. Heating of trapped ions from the quantum ground state. Phys. Rev. A 61, 063418-1–063418-8 (2000).

    ADS  Google Scholar 

  49. 49

    Larson, D. J. et al. Sympathetic cooling of trapped ions: a laser-cooled two-species nonneutral ion plasma. Phys. Rev. Lett 57, 70 (1986).

    ADS  CAS  PubMed  Google Scholar 

  50. 50

    Kielpinski, D. et al. Sympathetic cooling of trapped ions for quantum logic. Phys. Rev. A 61, 032310-1–032310-8 (2000).

    ADS  Google Scholar 

  51. 51

    Morigi, G. & Walther, H. Two-species Coulomb chains for quantum information. Eur. Phys. J. D 13, 261–269 (2001).

    ADS  CAS  Google Scholar 

  52. 52

    Jessen, P. & Deutsch, I. Optical lattices. Adv. At. Mol. Opt. Phys. 37, 95–138 (1996).

    ADS  CAS  Google Scholar 

  53. 53

    Hamann, S. et al. Resolved-sideband Raman cooling to the ground state of an optical lattice. Phys. Rev. Lett. 80, 4149–4152 (1998).

    ADS  CAS  Google Scholar 

  54. 54

    Vuletic, V., Chin, C., Kerman, A. J. & Chu, S. Raman sideband cooling of trapped cesium atoms at very high densities. Phys. Rev. Lett. 81, 5768–5771 (1998).

    ADS  CAS  Google Scholar 

  55. 55

    Perrin, H., Kuhn, A., Bouchoule, I. & Salomon, C. Sideband cooling of neutral atoms in a far-detuned optical lattice. Europhys. Lett. 42, 395–400 (1998).

    ADS  CAS  Google Scholar 

  56. 56

    Raithel, G., Phillips, W. D. & Rolston, S. L. Coherence decay of wave-packets in optical lattices. Phys. Rev. Lett. 81, 3615 (1998).

    ADS  CAS  Google Scholar 

  57. 57

    Haycock, D.L., Alsing, P. M., Grondalski, J., Deutsch, I. H. & Jessen, P. S. Mesoscopic quantum coherence in an optical lattice. Phys. Rev. Lett. 85, 3365 (2000).

    ADS  CAS  PubMed  Google Scholar 

  58. 58

    Brennen, G., Caves, C., Jessen, P. & Deutsch, I. Quantum logic gates in optical lattices. Phys. Rev. Lett. 82, 1060–1063 (1999).

    ADS  CAS  Google Scholar 

  59. 59

    Jaksch, D., Briegel, H. J., Cirac, J. I., Gardiner, C. W. & Zoller, P. Entanglement of atoms via cold controlled collisions. Phys. Rev. Lett. 82, 1975–1978 (1999).

    ADS  CAS  Google Scholar 

  60. 60

    Jaksch, D. et al. Fast quantum gates for neutral atoms. Phys. Rev. Lett. 85, 2208–2211 (2000).

    ADS  CAS  PubMed  Google Scholar 

  61. 61

    DeMille, D. Quantum computation with trapped polar molecules. Preprint quant-ph/0109083 at http://xxx.lanl.gov (2001).

  62. 62

    Jaksch, D., Bruder, C., Cirac, J. I., Gardiner, C. W. & Zoller, P. Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108–3111 (1998).

    ADS  CAS  Google Scholar 

  63. 63

    Spekkens, R. W. & Sipe, J. E. Spatial fragmentation of a Bose-Einstein condensate in a double-well potential. Phys. Rev. A 59, 3868–3877 (1999).

    ADS  CAS  Google Scholar 

  64. 64

    Orzel, C., Tuchman, A. K., Fenselau, M. L., Yasuda, M. & Kasevich, M. A. Squeezed states in a Bose-Einstein condensate. Science 291, 2386–2389 (2001).

    ADS  CAS  PubMed  Google Scholar 

  65. 65

    Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

    ADS  CAS  Google Scholar 

  66. 66

    Cirac, I. & Zoller, P. A scalable quantum computer with ions in an array of microtraps. Nature 404, 579–581 (2000).

    ADS  CAS  PubMed  Google Scholar 

  67. 67

    Monroe, C., Meekhof, D. M., King, B. E. & Wineland, D. J. A Schrödinger cat superposition state of an atom. Science 272, 1131–1136 (1996).

    ADS  MathSciNet  CAS  MATH  Google Scholar 

  68. 68

    Bennett, C. H. et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    ADS  CAS  Google Scholar 

  70. 70

    Cirac, I., Zoller, P., Kimble, H. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).

    ADS  CAS  Google Scholar 

  71. 71

    Law, C. & Kimble, H. Deterministic generation of a bit-stream of single-photon pulses. J. Mod. Opt. 44, 2067–2074 (1997).

    ADS  CAS  Google Scholar 

  72. 72

    van Enk, S., Cirac, I. & Zoller, P. Ideal quantum communication over noisy channels, a quantum optical implementation. Phys. Rev. Lett. 78, 4293–4296 (1997).

    ADS  CAS  Google Scholar 

  73. 73

    Ye, J., Vernooy, D. W. & Kimble, H. J. Trapping of single atoms in cavity QED. Phys. Rev. Lett. 83, 4987–4990 (1999).

    ADS  CAS  Google Scholar 

  74. 74

    Hood, C. J., Lynn, T. W., Doherty, A. C., Parkins, A. S. & Kimble, H. J. The atom-cavity microscope: single atoms bound in orbit by single photons. Science 287, 1447–1453 (2000).

    ADS  CAS  Google Scholar 

  75. 75

    Pinske, P., Fischer, T., Maunz, P. & Rempe, G. Trapping an atom with single photons. Nature 404, 365–368 (2000).

    ADS  Google Scholar 

  76. 76

    Doherty, A., Lynn, T. W., Hood, C. J. & Kimble, H. J. Trapping of single atoms with single photons in cavity QED. Phys. Rev. A 63, 013401-1–013401-24 (2001).

    ADS  Google Scholar 

  77. 77

    Guthöhrlein, G. R., Keller, M., Hayasaka, K., Lange, W. & Walther, H. A single ion as a nanoscopic probe of an optical field. Nature 414, 49–51 (2001).

    ADS  PubMed  Google Scholar 

  78. 78

    Liu, C., Dutton, Z., Behroozi, C. H. & Hau, L. V. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490–493 (2001).

    ADS  CAS  Google Scholar 

  79. 79

    Phillips, D. F., Fleischhauer, A., Mair, A., Walsworth, R. L. & Lukin, M. D. Storage of light in atomic vapor. Phys. Rev. Lett. 86, 783–786 (2001).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Budker, D., Kimball, D. F., Rochester, S. M. & Yashchuk, V. V. Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation. Phys. Rev. Lett. 83, 1767–1770 (1999).

    ADS  CAS  Google Scholar 

  81. 81

    Lukin, M. & Imamoglu, A. Controlling photons using electromagnetically induced transparency. Nature 413, 273–276 (2001).

    ADS  CAS  Google Scholar 

  82. 82

    Fleischhauer, M. & Lukin, M. Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett. 84, 5094–5097 (2000).

    ADS  CAS  Google Scholar 

  83. 83

    Mair, A., Hager, J., Phillips, D. F., Walsworth, R. L. & Lukin, M. D. Phase coherence and control of stored photonic information. Preprint quant-ph/0108046 at http://xxx.lanl.gov (2001).

  84. 84

    Lukin, M. et al. Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett 87, 037901-1–037901-4 (2001).

    ADS  Google Scholar 

  85. 85

    Hald, J., Sørensen, J. L., Schori, C. & Polzik, E. S. Spin squeezed atoms: a macroscopic entangled ensemble created by light. Phys. Rev. Lett. 83, 1319–1322 (1999).

    ADS  Google Scholar 

  86. 86

    Kuzmich, A., Mandel, L. & Bigelow, N. Generation of spin squeezing via continuous quantum nondemolition measurement. Phys. Rev. Lett. 85, 1594–1597 (2000).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Julsgaard, B., Kozhekin, A. & Polzik, E. Experimental long-lived entanglement of two macroscopic objects. Nature 413, 400–403 (2001).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Wolf, F. A. Taking the Quantum Leap (Harper and Row, San Francisco, 1981).

    Google Scholar 

  90. 90

    Zurek, W. H. Decoherence and the transition from quantum to classical. Phys. Today 44, 34–44 (1991).

    Google Scholar 

  91. 91

    Braunstein, S. L., D'Ariano, G. M., Milburn, G. J. & Sacchi, M. F. Universal teleportation with a twist. Phys. Rev. Lett. 84, 3486–3489 (2000).

    ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the US National Security Agency and Advanced Research and Development Activity under an Army Research Office contract, and by the National Science Foundation ITR programme.

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. Monroe.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Monroe, C. Quantum information processing with atoms and photons. Nature 416, 238–246 (2002). https://doi.org/10.1038/416238a

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing