Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structural basis for antagonist-mediated recruitment of nuclear co-repressors by PPARα


Repression of gene transcription by nuclear receptors is mediated by interactions with co-repressor proteins such as SMRT and N-CoR1,2, which in turn recruit histone deacetylases to the chromatin3,4,5. Aberrant interactions between nuclear receptors and co-repressors contribute towards acute promyelocytic leukaemia and thyroid hormone resistance syndrome6,7,8. The binding of co-repressors to nuclear receptors occurs in the unliganded state, and can be stabilized by antagonists9. Here we report the crystal structure of a ternary complex containing the peroxisome proliferator-activated receptor-α ligand-binding domain bound to the antagonist GW6471 and a SMRT co-repressor motif. In this structure, the co-repressor motif adopts a three-turn α-helix that prevents the carboxy-terminal activation helix (AF-2) of the receptor from assuming the active conformation. Binding of the co-repressor motif is further reinforced by the antagonist, which blocks the AF-2 helix from adopting the active position. Biochemical analyses and structure-based mutagenesis indicate that this mode of co-repressor binding is highly conserved across nuclear receptors.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: GW6471 recruits co-repressors to PPARα.
Figure 2: Structure of the PPARα/GW6471/SMRT complex.
Figure 3: Conservation of co-repressor binding to nuclear receptors.


  1. 1

    Horlein, A. J. et al. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377, 397–404 (1995).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Chen, J. D. & Evans, R. M. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377, 454–457 (1995).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Nagy, L. et al. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 89, 373–380 (1997).

    CAS  Article  Google Scholar 

  4. 4

    Hassig, C. A., Fleischer, T. C., Billin, A. N., Schreiber, S. L. & Ayer, D. E. Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 89, 341–347 (1997).

    CAS  Article  Google Scholar 

  5. 5

    Laherty, C. D. et al. Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell 89, 349–356 (1997).

    CAS  Article  Google Scholar 

  6. 6

    Hong, S. H., David, G., Wong, C. W., Dejean, A. & Privalsky, M. L. SMRT corepressor interacts with PLZF and with the PML-retinoic acid receptor alpha (RARα) and PLZF-RARα oncoproteins associated with acute promyelocytic leukemia. Proc. Natl Acad. Sci. USA 94, 9028–9033 (1997).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Grignani, F. et al. Fusion proteins of the retinoic acid receptor-α recruit histone deacetylase in promyelocytic leukaemia. Nature 391, 815–881 (1998).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Yoh, S. M., Chatterjee, V. K. & Privalsky, M. L. Thyroid hormone resistance syndrome manifests as an aberrant interaction between mutant T3 receptors and transcriptional corepressors. Mol. Endocrinol. 11, 470–480 (1997).

    CAS  Article  Google Scholar 

  9. 9

    Jackson, T. A. et al. The partial agonist activity of antagonist-occupied steroid receptors is controlled by a novel hinge domain-binding coactivator L7/SPA and the corepressors N-CoR or SMRT. Mol. Endocrinol. 11, 693–705 (1997).

    CAS  Article  Google Scholar 

  10. 10

    Issemann, I. & Green, S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347, 645–650 (1990).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Xu, H. E. et al. Structural determinants of ligand binding selectivity between the peroxisome proliferator-activated receptors. Proc. Natl Acad. Sci. USA 98, 13919–13924 (2001).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Onate, S. A., Tsai, S. Y., Tsai, M. J. & O'Malley, B. W. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270, 1354–1357 (1995).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Shiau, A. K. et al. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95, 927–937 (1998).

    CAS  Article  Google Scholar 

  14. 14

    Darimont, B. D. et al. Structure and specificity of nuclear receptor–coactivator interactions. Genes Dev. 12, 3343–3356 (1998).

    CAS  Article  Google Scholar 

  15. 15

    Gampe, R. T. Jr et al. Asymmetry in the PPARγ/RXRα crystal structure reveals the molecular basis of heterodimerization among nuclear receptors. Mol. Cell 5, 545–555 (2000).

    CAS  Article  Google Scholar 

  16. 16

    Nolte, R. T. et al. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-γ. Nature 395, 137–143 (1998).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Heery, D. M., Kalkhoven, E., Hoare, S. & Parker, M. G. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387, 733–736 (1997).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Yang, W., Rachez, C. & Freedman, L. P. Discrete roles for peroxisome proliferator-activated receptor gamma and retinoid X receptor in recruiting nuclear receptor coactivators. Mol. Cell Biol. 20, 8008–8017 (2000).

    CAS  Article  Google Scholar 

  19. 19

    Nagy, L. et al. Mechanism of corepressor binding and release from nuclear hormone receptors. Genes Dev. 13, 3209–3216 (1999).

    CAS  Article  Google Scholar 

  20. 20

    Hu, X. & Lazar, M. A. The CoRNR motif controls the recruitment of corepressors by nuclear hormone receptors. Nature 402, 93–96 (1999).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Perissi, V. et al. Molecular determinants of nuclear receptor–corepressor interaction. Genes Dev. 13, 3198–3208 (1999).

    CAS  Article  Google Scholar 

  22. 22

    Zhou, G. et al. Nuclear receptors have distinct affinities for coactivators: characterization by fluorescence resonance energy transfer. Mol. Endocrinol. 12, 1594–1604 (1998).

    CAS  Article  Google Scholar 

  23. 23

    Xu, H. E. et al. Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Mol. Cell 3, 397–403 (1999).

    CAS  Article  Google Scholar 

  24. 24

    Otwinowski, Z. & Minor, W. in Macromolecular Crystallography (eds Carter, J. C. W. & Sweet, R. M.) 307–326 (Academic, New York, 1997).

    Book  Google Scholar 

  25. 25

    Navaza, J., Gover, S. & Wolf, W. in Molecular Replacement: Proceedings of the CCP4 Study Weekend (ed. Dodson, E. J.) 87–90 (SERC, Daresbury, 1992).

    Google Scholar 

  26. 26

    Cowtan, K. in Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography 31, 34–38 (1994).

    Google Scholar 

  27. 27

    Nolte, R. T., Conlin, R. M., Harrison, S. C. & Brown, R. S. Differing roles for zinc fingers in DNA recognition: structure of a six-finger transcription factor IIIA complex. Proc. Natl Acad. Sci. USA 95, 2938–2943 (1998).

    ADS  CAS  Article  Google Scholar 

  28. 28

    Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    CAS  Article  Google Scholar 

  29. 29

    Oberfield, J. L. et al. A peroxisome proliferator-activated receptor gamma ligand inhibits adipocyte differentiation. Proc. Natl Acad. Sci. USA 96, 6102–6106 (1999).

    ADS  CAS  Article  Google Scholar 

  30. 30

    Ullman, E. F. et al. Luminescent oxygen channeling immunoassay: measurement of particle binding kinetics by chemiluminescence. Proc. Natl Acad. Sci. USA 91, 5426–5430 (1994).

    ADS  CAS  Article  Google Scholar 

Download references


We thank B. Wisely and R. Bledsoe for making co-repressor expression constructs in early crystallization studies; W. Burkart and M. Moyer for protein sequencing; M. Iannone for compound characterizations; G. Waitt and C. Wagner for mass spectroscopy and amino-acid content analysis; and J. Chrzas and A. Howard for assistance with data collections at 17-ID. Use of the Advanced Photon Source was supported by the US Department of Energy, Basic Energy Sciences, and Office of Science. We also thank L. Kuyper and D. Eggleston for support and critical reading of the manuscript.

Author information



Corresponding author

Correspondence to H. Eric Xu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xu, H., Stanley, T., Montana, V. et al. Structural basis for antagonist-mediated recruitment of nuclear co-repressors by PPARα. Nature 415, 813–817 (2002).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing