Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chameleon radiation by oceanic dispersal


Historical biogeography is dominated by vicariance methods that search for a congruent pattern of fragmentation of ancestral distributions produced by shared Earth history1,2,3. A focus of vicariant studies has been austral area relationships and the break-up of the supercontinent Gondwana3,4,5. Chameleons are one of the few extant terrestrial vertebrates thought to have biogeographic patterns that are congruent with the Gondwanan break-up of Madagascar and Africa6,7. Here we show, using molecular and morphological evidence for 52 chameleon taxa, support for a phylogeny and area cladogram that does not fit a simple vicariant history. Oceanic dispersal—not Gondwanan break-up—facilitated species radiation, and the most parsimonious biogeographic hypothesis supports a Madagascan origin for chameleons, with multiple ‘out-of-Madagascar’ dispersal events to Africa, the Seychelles, the Comoros archipelago, and possibly Reunion Island. Although dispersal is evident in other Indian Ocean terrestrial animal groups8,9,10,11,12,13,14,15,16, our study finds substantial out-of-Madagascar species radiation, and further highlights the importance of oceanic dispersal as a potential precursor for speciation.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Inter-relationships of chameleons and corresponding area distributions based on equal-weighted molecular and morphological data and maximum parsimony.
Figure 2: Continental area cladograms for the Indian Ocean region based on chameleon phylogeny and geological break-up models.


  1. Nelson, G. & Platnick, N. I. Systematics and Biogeography: Cladistics and Vicariance (Columbia University, New York, 1981).

    Google Scholar 

  2. Morrone, J. J. & Crisci, J. V. Historical biogeography: introduction to methods. Annu. Rev. Ecol. Syst. 26, 373–401 (1995).

    Article  Google Scholar 

  3. Humphries, C. J. & Parenti, L. R. Cladistic Biogeography 2nd edn (Oxford Univ. Press, Oxford, 1999).

    Google Scholar 

  4. Brown, J. H. & Lomolino, M. V. Biogeography 2nd edn (Sinauer, Sunderland, 1998).

    Google Scholar 

  5. Crisci, J. V., Cigliano, M. M., Morrone, J. J. & Roig-Junent, S. Historical biogeography of southern South America. Syst. Zool. 40, 152–171 (1991).

    Article  Google Scholar 

  6. Klaver, C. J. J. & Böhme, W. Phylogeny and classification of the chamaeleonidae (Suria) with special reference to hemipenis morphology. Bonn. Zool. Mon. 22, 1–64 (1986).

    Google Scholar 

  7. Hofman, A., Maxson, L. R. & Arntzen, W. Biochemical evidence pertaining to the taxonomic relationships within the family Chamaeleonidae. Amphibia-Reptilia 12, 245–265 (1991).

    Article  Google Scholar 

  8. Blanc, C. P. in Biogeography and Ecology in Madagascar (eds Battistini, R. & Richard-Vindard, G.) 501–614 (Junk, The Hague, 1972).

    Google Scholar 

  9. Arnold, E. N. Indian Ocean giant tortoises: their systematics and island adaptations. Phil. Trans. R. Soc. Lond. B. 286, 127–145 (1979).

    ADS  Article  Google Scholar 

  10. Kluge, A. G. & Nussbaum, R. A. A review of African–Madagascan gekkonid lizard phylogeny and biogeography (Squamata). Misc. Publ. Mus. Zool. Univ. Michigan 183, 1–20 (1995).

    Google Scholar 

  11. Coccone, A., Amato, G., Gratry, O. C., Behler, J. & Powell, J. R. A molecular phylogeny of four endangered Madagascar tortoises based on MtDNA sequences. Mol. Phyl. Evol. 12, 1–9 (1999).

    Article  Google Scholar 

  12. Fisher, B. L. in Biogeography of Madagascar (ed. Lourenco, W. R.) 457–466 (Orstom, Paris, 1996).

    Google Scholar 

  13. Yoder, A. D. in Biogeography of Madagascar (ed. Lourenco, W. R.) 245–258 (Orstom, Paris, 1996).

    Google Scholar 

  14. Mausfeld, P., Vences, M., Schmitz, A. & Veith, M. First data on the molecular phylogeography of scincid lizards of the genus Mabuya. Mol. Phyl. Evol. 17, 11–14 (2000).

    CAS  Article  Google Scholar 

  15. Jansa, S. A., Goodman, S. M. & Tucker, P. K. Molecular phylogeny and biogeography of the native rodents of Madagascar (Muridae: Nesomyinae): a test of the single-origin hypothesis. Cladistics 15, 253–270 (1999).

    Article  Google Scholar 

  16. Griswold, C. E. in Diversity and Endemism in Madagascar (eds Lourenco, W. R. & Goodman, S. M.) 345–354 (Société de Biogéographie, Paris, 2000).

    Google Scholar 

  17. Rabinowitz, P. D., Coffin, M. F. & Falvey, D. The separation of Madagascar and Africa. Science 220, 67–69 (1983).

    ADS  CAS  Article  Google Scholar 

  18. Storey, M. et al. Timing of hot spot-related volcanism and the breakup of Madagascar and India. Science 267, 852–855 (1995).

    ADS  CAS  Article  Google Scholar 

  19. Storey, B. C. The role of mantle plumes in continental breakup: case histories from Gondwanaland. Nature 377, 301–308 (1995).

    ADS  CAS  Article  Google Scholar 

  20. Hay, W. W. et al. in Evolution of the Cretaceous Ocean-Climate System (Spec. Pap. 332) (eds Barrera, E. & Johnson, C.) 1–48 (Geological Society of America, Boulder, 1999).

    Book  Google Scholar 

  21. Frost, D. R. & Etheridge, R. A phylogenetic analysis and taxonomy of the iguanian lizards (Reptilia: Squamata). Univ. Kansas Mus. Nat. His. Misc. Publ. 81, 1–65 (1989).

    Google Scholar 

  22. Rieppel, O. & Crumley, C. Paedomorphosis and skull structure in Malagasy chameleons (Reptilia: Chamaeleondiae). J. Zool. Lond. 243, 351–380 (1997).

    Article  Google Scholar 

  23. Rieppel, O. The phylogenetic relationships within the Chamaeleonidae, with comments on some aspects of cladistic analysis. Zool. J. Linn. Soc. 89, 41–62 (1987).

    Article  Google Scholar 

  24. Page, R. D. M. Maps between trees and cladistic analysis of historical associations among genes, organisms, and areas. Syst. Biol. 43, 58–77 (1994).

    Google Scholar 

  25. Emerick, C. M. & Duncan, R. A. Age progressive volcanism in the Comores Archipelago, western Indian Ocean and implications for Somali plate tectonics. Earth Planet. Sci. Lett. 60, 415–428 (1982).

    ADS  CAS  Article  Google Scholar 

  26. Rieppel, O., Walker, A. & Odhiambo, I. A preliminary report on a fossil Chamaeleonine (Reptilia: Chamaeleoninae) skull from the Miocene of Kenya. J. Herpetol. 26, 77–80 (1992).

    Article  Google Scholar 

  27. Hillenius, D. A new chameleon from the Miocene of Fort Ternan, Kenya (Chamaeleonidae, Reptilia). Beaufortia 28, 9–15 (1978).

    Google Scholar 

  28. Moody, S. & Rocek, Z. Chamaeleo caroliquarti (Chamaeleonidae, Suria): a new species from the Lower Miocene of Central Europe. Vestnik Ústredniho ústavu geologického 55, 85–92 (1980).

    Google Scholar 

  29. Rand, D. M. Thermal habit, metabolic rate, and the evolution of mitochondrial DNA. Trends Ecol. Evol. 9, 125–131 (1994).

    CAS  Article  Google Scholar 

  30. Trueman, J. W. H. Reverse successive weighting. Syst. Biol. 47, 733–737 (1998).

    CAS  Article  Google Scholar 

Download references


We thank the authorities in Madagascar and the Seychelles for permission to conduct fieldwork. We thank J. Brown, T. Peterson, R. Prum, O. Rieppel, L. Trueb and E. Wiley for comments. C.J.R. and R.A.N. were supported by the National Geographic Society and the National Science Foundation, Washington.

Author information

Authors and Affiliations


Corresponding author

Correspondence to C. J. Raxworthy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Raxworthy, C., Forstner, M. & Nussbaum, R. Chameleon radiation by oceanic dispersal. Nature 415, 784–787 (2002).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing