Abstract
For a system at a temperature of absolute zero, all thermal fluctuations are frozen out, while quantum fluctuations prevail. These microscopic quantum fluctuations can induce a macroscopic phase transition in the ground state of a many-body system when the relative strength of two competing energy terms is varied across a critical value. Here we observe such a quantum phase transition in a Bose–Einstein condensate with repulsive interactions, held in a three-dimensional optical lattice potential. As the potential depth of the lattice is increased, a transition is observed from a superfluid to a Mott insulator phase. In the superfluid phase, each atom is spread out over the entire lattice, with long-range phase coherence. But in the insulating phase, exact numbers of atoms are localized at individual lattice sites, with no phase coherence across the lattice; this phase is characterized by a gap in the excitation spectrum. We can induce reversible changes between the two ground states of the system.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Double dome structure of the Bose–Einstein condensation in diluted S = 3/2 quantum magnets
Nature Communications Open Access 10 March 2023
-
Bloch oscillations and matter-wave localization of a dipolar quantum gas in a one-dimensional lattice
Communications Physics Open Access 15 September 2022
-
Longitudinal and transversal resonant tunneling of interacting bosons in a two-dimensional Josephson junction
Scientific Reports Open Access 12 January 2022
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout






References
Fisher, M. P. A., Weichman, P. B., Grinstein, G. & Fisher, D. S. Boson localization and the superfluid-insulator transition. Phys. Rev. B 40, 546–570 (1989).
Jaksch, D., Bruder, C., Cirac, J. I., Gardiner, C. W. & Zoller, P. Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108–3111 (1998).
Stringari, S. Bose-Einstein condensation and superfluidity in trapped atomic gases. C.R. Acad. Sci. 4, 381–397 (2001).
Sachdev, S. Quantum Phase Transitions (Cambridge Univ. Press, Cambridge, 2001).
Sheshadri, K., Krishnamurthy, H. R., Pandit, R. & Ramakrishnan, T. V. Superfluid and insulating phases in an interacting-boson model: Mean-field theory and the RPA. Europhys. Lett. 22, 257–263 (1993).
Freericks, J. K. & Monien, H. Phase diagram of the Bose Hubbard model. Europhys. Lett. 26, 545–550 (1995).
van Oosten, D., van der Straten, P. & Stoof, H. T. C. Quantum phases in an optical lattice. Phys. Rev. A 63, 053601-1–053601-12 (2001).
Elstner, N. & Monien, H. Dynamics and thermodynamics of the Bose-Hubbard model. Phys. Rev. B 59, 12184–12187 (1999).
Orr, B. G., Jaeger, H. M., Goldman, A. M. & Kuper, C. G. Global phase coherence in two-dimensional granular superconductors. Phys. Rev. Lett. 56, 378–381 (1986).
Haviland, D. B., Liu, Y. & Goldman, A. M. Onset of superconductivity in the two-dimensional limit. Phys. Rev. Lett. 62, 2180–2183 (1989).
Bradley, R. M. & Doniach, S. Quantum fluctuations in chains of Josephson junctions. Phys. Rev. B 30, 1138–1147 (1984).
Geerligs, L. J., Peters, M., de Groot, L. E. M., Verbruggen, A. & Mooij, J. E. Charging effects and quantum coherence in regular Josephson junction arrays. Phys. Rev. Lett. 63, 326–329 (1989).
Zwerger, W. Global and local phase coherence in dissipative Josephson-junction arrays. Europhys. Lett. 9, 421–426 (1989).
van der Zant, H. S. J., Fritschy, F. C., Elion, W. J., Geerligs, L. J. & Mooij, J. E. Field-induced superconductor-to-insulator transitions in Josephson-junction arrays. Phys. Rev. Lett. 69, 2971–2974 (1992).
van Oudenaarden, A. & Mooij, J. E. One-dimensional Mott insulator formed by quantum vortices in Josephson junction arrays. Phys. Rev. Lett. 76, 4947–4950 (1996).
Chow, E., Delsing, P. & Haviland, D. B. Length-scale dependence of the superconductor-to-insulator quantum phase transition in one dimension. Phys. Rev. Lett. 81, 204–207 (1998).
Orzel, C., Tuchman, A. K., Fenselau, M. L., Yasuda, M. & Kasevich, M. A. Squeezed states in a Bose-Einstein condensate. Science 291, 2386–2389 (2001).
Greiner, M., Bloch, I., Hänsch, T. W. & Esslinger, T. Magnetic transport of trapped cold atoms over a large distance. Phys. Rev. A 63, 031401-1–031401-4 (2001).
Greiner, M., Bloch, I., Mandel, O., Hänsch, T. W. & Esslinger, T. Exploring phase coherence in a 2D lattice of Bose-Einstein condensates. Phys. Rev. Lett. 87, 160405-1–160405-4 (2001).
Grimm, R., Weidemüller, M. & Ovchinnikov, Yu. B. Optical dipole traps for neutral atoms. Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).
Kastberg, A., Phillips, W. D., Rolston, S. L., Spreeuw, R. J. C. & Jessen, P. S. Adiabatic cooling of cesium to 700 nK in an optical lattice. Phys. Rev. Lett. 74, 1542–1545 (1995).
Dalfovo, F. D., Giorgini, S., Pitaevskii, L. P. & Stringari, S. Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999).
Inouye, S. et al. Observation of Feshbach resonances in a Bose–Einstein condensate. Nature 392, 151–154 (1998).
Donley, E. A. et al. Dynamics of collapsing and exploding Bose–Einstein condensates. Nature 412, 295–299 (2001).
Bouyer, P. & Kasevich, M. Heisenberg-limited spectroscopy with degenerate Bose-Einstein gases. Phys. Rev. A 56, R1083–R1086 (1997).
Jaksch, D., Briegel, H.-J., Cirac, J. I., Gardiner, C. W. & Zoller, P. Entanglement of atoms via cold controlled collisions. Phys. Rev. Lett. 82, 1975–1978 (1999).
Acknowledgements
We thank W. Zwerger, H. Monien, I. Cirac, K. Burnett and Yu. Kagan for discussions. This work was supported by the DFG, and by the EU under the QUEST programme.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Greiner, M., Mandel, O., Esslinger, T. et al. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002). https://doi.org/10.1038/415039a
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/415039a
This article is cited by
-
Atomic Bose–Einstein condensate in twisted-bilayer optical lattices
Nature (2023)
-
Double dome structure of the Bose–Einstein condensation in diluted S = 3/2 quantum magnets
Nature Communications (2023)
-
Time-of-flight quantum tomography of an atom in an optical tweezer
Nature Physics (2023)
-
Quantum simulations with ultracold atoms in optical lattices: past, present and future
Journal of the Korean Physical Society (2023)
-
Longitudinal and transversal resonant tunneling of interacting bosons in a two-dimensional Josephson junction
Scientific Reports (2022)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.