Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Universality class of a spinor Bose–Einstein condensate far from equilibrium

Abstract

Scale invariance and self-similarity in physics provide a unified framework for classifying phases of matter and dynamical properties near equilibrium in both classical and quantum systems. This paradigm has been further extended to isolated many-body quantum systems driven far from equilibrium, for which the physical observables exhibit dynamical scaling with universal scaling exponents. Universal dynamics appear in a wide range of scenarios, including cosmology, quark–gluon matter, ultracold atoms and quantum spin magnets. However, how the universal dynamics depend on the symmetry of the underlying Hamiltonian in non-equilibrium systems remains an outstanding challenge. Here we report on the classification of universal coarsening dynamics in a quenched two-dimensional ferromagnetic spinor Bose gas. We observe spatio-temporal scaling of spin correlation functions with distinguishable scaling exponents that characterize binary and diffusive fluids. The universality class of the coarsening dynamics is determined by the symmetry of the order parameter and the dynamics of the topological defects, such as domain walls and vortices. Our results categorize the universality classes of far-from-equilibrium quantum dynamics based on the symmetry properties of the system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Universal coarsening dynamics and topological defects.
Fig. 2: Dynamic scaling and power-law growth of the domain length.
Fig. 3: Dynamic scaling of the spin structure factor in the easy-axis quench.
Fig. 4: Universal coarsening dynamics in the easy-axis phase.
Fig. 5: Coarsening dynamics in the isotropic ferromagnetic phase.

Similar content being viewed by others

Data availability

Source data are provided with this paper.

References

  1. Hohenberg, P. C. & Halperin, B. I. Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435–479 (1977).

    CAS  ADS  Google Scholar 

  2. Polkovnikov, A., Sengupta, K., Silva, A. & Vengalattore, M. Colloquium: nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys. 83, 863–883 (2011).

    ADS  Google Scholar 

  3. Eisert, J., Friesdorf, M. & Gogolin, C. Quantum many-body systems out of equilibrium. Nat. Phys. 11, 123–130 (2015).

    Google Scholar 

  4. Ueda, M. Quantum equilibration, thermalization and prethermalization in ultracold atoms. Nat. Rev. Phys. 2, 669–681 (2020).

    CAS  Google Scholar 

  5. Makotyn, P., Klauss, C. E., Goldberger, D. L., Cornell, E. A. & Jin, D. S. Universal dynamics of a degenerate unitary Bose gas. Nat. Phys. 10, 116–119 (2014).

    CAS  Google Scholar 

  6. Eigen, C. et al. Universal prethermal dynamics of Bose gases quenched to unitarity. Nature 563, 221–224 (2018).

    CAS  PubMed  ADS  Google Scholar 

  7. Gałka, M. et al. Emergence of isotropy and dynamic scaling in 2D wave turbulence in a homogeneous Bose gas. Phys. Rev. Lett. 129, 190402 (2022).

    PubMed  ADS  Google Scholar 

  8. Prüfer, M. et al. Observation of universal dynamics in a spinor Bose gas far from equilibrium. Nature 563, 217–220 (2018).

    PubMed  ADS  Google Scholar 

  9. Erne, S., Bücker, R., Gasenzer, T., Berges, J. & Schmiedmayer, J. Universal dynamics in an isolated one-dimensional Bose gas far from equilibrium. Nature 563, 225–229 (2018).

    CAS  PubMed  ADS  Google Scholar 

  10. Glidden, J. A. P. et al. Bidirectional dynamic scaling in an isolated Bose gas far from equilibrium. Nat. Phys. 17, 457–461 (2021).

    CAS  Google Scholar 

  11. Fontaine, Q. et al. Kardar–Parisi–Zhang universality in a one-dimensional polariton condensate. Nature 608, 687–691 (2022).

    CAS  PubMed  ADS  Google Scholar 

  12. Zu, C. et al. Emergent hydrodynamics in a strongly interacting dipolar spin ensemble. Nature 597, 45–50 (2021).

    CAS  PubMed  ADS  Google Scholar 

  13. Wei, D. et al. Quantum gas microscopy of Kardar–Parisi–Zhang superdiffusion. Science 376, 716–720 (2022).

    CAS  PubMed  ADS  Google Scholar 

  14. Joshi, M. K. et al. Observing emergent hydrodynamics in a long-range quantum magnet. Science 376, 720–724 (2022).

    CAS  PubMed  ADS  Google Scholar 

  15. Baier, R., Mueller, A. H., Schiff, D. & Son, D. T. ‘Bottom-up’ thermalization in heavy ion collisions. Phys. Lett. B 502, 51–58 (2001).

    CAS  ADS  Google Scholar 

  16. Berges, J., Rothkopf, A. & Schmidt, J. Nonthermal fixed points: effective weak coupling for strongly correlated systems far from equilibrium. Phys. Rev. Lett. 101, 041603 (2008).

    PubMed  ADS  Google Scholar 

  17. Schole, J., Nowak, B. & Gasenzer, T. Critical dynamics of a two-dimensional superfluid near a nonthermal fixed point. Phys. Rev. A 86, 013624 (2012).

    ADS  Google Scholar 

  18. Schmidt, M., Erne, S., Nowak, B., Sexty, D. & Gasenzer, T. Non-thermal fixed points and solitons in a one-dimensional Bose gas. New J. Phys. 14, 075005 (2012).

    ADS  Google Scholar 

  19. Berges, J., Boguslavski, K., Schlichting, S. & Venugopalan, R. Turbulent thermalization process in heavy-ion collisions at ultrarelativistic energies. Phys. Rev. D 89, 074011 (2014).

    ADS  Google Scholar 

  20. Berges, J., Boguslavski, K., Schlichting, S. & Venugopalan, R. Universality far from equilibrium: from superfluid Bose gases to heavy-ion collisions. Phys. Rev. Lett. 114, 061601 (2015).

    CAS  PubMed  ADS  Google Scholar 

  21. Piñeiro Orioli, A., Boguslavski, K. & Berges, J. Universal self-similar dynamics of relativistic and nonrelativistic field theories near nonthermal fixed points. Phys. Rev. D 92, 025041 (2015).

    MathSciNet  ADS  Google Scholar 

  22. Kudo, K. & Kawaguchi, Y. Magnetic domain growth in a ferromagnetic Bose–Einstein condensate: effects of current. Phys. Rev. A 88, 013630 (2013).

    ADS  Google Scholar 

  23. Hofmann, J., Natu, S. S. & Das Sarma, S. Coarsening dynamics of binary Bose condensates. Phys. Rev. Lett. 113, 095702 (2014).

    PubMed  ADS  Google Scholar 

  24. Williamson, L. A. & Blakie, P. B. Universal coarsening dynamics of a quenched ferromagnetic spin-1 condensate. Phys. Rev. Lett. 116, 025301 (2016).

    PubMed  ADS  Google Scholar 

  25. Williamson, L. A. & Blakie, P. B. Coarsening dynamics of an isotropic ferromagnetic superfluid. Phys. Rev. Lett. 119, 255301 (2017).

    CAS  PubMed  ADS  Google Scholar 

  26. Bray, A. J. Theory of phase-ordering kinetics. Adv. Phys. 43, 357–459 (1994).

    ADS  Google Scholar 

  27. Bertini, B., Collura, M., De Nardis, J. & Fagotti, M. Transport in out-of-equilibrium XXZ chains: exact profiles of charges and currents. Phys. Rev. Lett. 117, 207201 (2016).

    PubMed  ADS  Google Scholar 

  28. Castro-Alvaredo, O. A., Doyon, B. & Yoshimura, T. Emergent hydrodynamics in integrable quantum systems out of equilibrium. Phys. Rev. X 6, 041065 (2016).

    Google Scholar 

  29. Ljubotina, M., Žnidarič, M. & Prosen, T. Spin diffusion from an inhomogeneous quench in an integrable system. Nat. Commun. 8, 16117 (2017).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  30. Gopalakrishnan, S. & Vasseur, R. Kinetic theory of spin diffusion and superdiffusion in XXZ spin chains. Phys. Rev. Lett. 122, 127202 (2019).

    CAS  PubMed  ADS  Google Scholar 

  31. Ljubotina, M., Žnidarič, M. & Prosen, T. Kardar–Parisi–Zhang physics in the quantum Heisenberg magnet. Phys. Rev. Lett. 122, 210602 (2019).

    CAS  PubMed  ADS  Google Scholar 

  32. Kardar, M., Parisi, G. & Zhang, Y.-C. Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986).

    CAS  PubMed  ADS  Google Scholar 

  33. Mikheev, A. N., Schmied, C.-M. & Gasenzer, T. Low-energy effective theory of nonthermal fixed points in a multicomponent Bose gas. Phys. Rev. A 99, 063622 (2019).

    CAS  ADS  Google Scholar 

  34. Huh, S., Kim, K., Kwon, K. & Choi, J.-y. Observation of a strongly ferromagnetic spinor Bose–Einstein condensate. Phys. Rev. Res. 2, 033471 (2020).

    CAS  Google Scholar 

  35. Ho, T.-L. Spinor Bose condensates in optical traps. Phys. Rev. Lett. 81, 742–745 (1998).

    CAS  ADS  Google Scholar 

  36. Ohmi, T. & Machida, K. Bose–Einstein condensation with internal degrees of freedom in alkali atom gases. J. Phys. Soc. Jpn 67, 1822–1825 (1998).

    CAS  ADS  Google Scholar 

  37. Kawaguchi, Y. & Ueda, M. Spinor Bose–Einstein condensates. Phys. Rep. 520, 253–381 (2012).

    MathSciNet  ADS  Google Scholar 

  38. Sadler, L. E., Higbie, J. M., Leslie, S. R., Vengalattore, M. & Stamper-Kurn, D. M. Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose–Einstein condensate. Nature 443, 312–315 (2006).

    CAS  PubMed  ADS  Google Scholar 

  39. Blakie, P. B., Bradley, A. S., Davis, M. J., Ballagh, R. J. & Gardiner, C. W. Dynamics and statistical mechanics of ultra-cold Bose gases using c-field techniques. Adv. Phys. 57, 363–455 (2008).

    CAS  ADS  Google Scholar 

  40. Kim, K., Hur, J., Huh, S., Choi, S. & Choi, J.-y. Emission of spin-correlated matter-wave jets from spinor Bose–Einstein condensates. Phys. Rev. Lett. 127, 043401 (2021).

    CAS  PubMed  ADS  Google Scholar 

  41. Huse, D. A. Corrections to late-stage behavior in spinodal decomposition: Lifshitz–Slyozov scaling and Monte Carlo simulations. Phys. Rev. B 34, 7845–7850 (1986).

    CAS  ADS  Google Scholar 

  42. Bourges, A. & Blakie, P. B. Different growth rates for spin and superfluid order in a quenched spinor condensate. Phys. Rev. A 95, 023616 (2017).

    ADS  Google Scholar 

  43. De, S. et al. Quenched binary Bose–Einstein condensates: spin-domain formation and coarsening. Phys. Rev. A 89, 033631 (2014).

    ADS  Google Scholar 

  44. Gauthier, G. et al. Giant vortex clusters in a two-dimensional quantum fluid. Science 364, 1264–1267 (2019).

    MathSciNet  CAS  PubMed  ADS  Google Scholar 

  45. Johnstone, S. P. et al. Evolution of large-scale flow from turbulence in a two-dimensional superfluid. Science 364, 1267–1271 (2019).

    MathSciNet  CAS  PubMed  ADS  Google Scholar 

  46. Karl, M. & Gasenzer, T. Strongly anomalous non-thermal fixed point in a quenched two-dimensional Bose gas. New J. Phys. 19, 093014 (2017).

    ADS  Google Scholar 

  47. Schmied, C.-M., Prüfer, M., Oberthaler, M. K. & Gasenzer, T. Bidirectional universal dynamics in a spinor Bose gas close to a nonthermal fixed point. Phys. Rev. A 99, 033611 (2019).

    CAS  ADS  Google Scholar 

  48. Fujimoto, K., Hamazaki, R. & Ueda, M. Flemish strings of magnetic solitons and a nonthermal fixed point in a one-dimensional antiferromagnetic spin-1 Bose gas. Phys. Rev. Lett. 122, 173001 (2019).

    CAS  PubMed  ADS  Google Scholar 

  49. Bhattacharyya, S., Rodriguez-Nieva, J. F. & Demler, E. Universal prethermal dynamics in Heisenberg ferromagnets. Phys. Rev. Lett. 125, 230601 (2020).

    MathSciNet  CAS  PubMed  ADS  Google Scholar 

  50. Rodriguez-Nieva, J. F., Orioli, A. P. & Marino, J. Far-from-equilibrium universality in the two-dimensional Heisenberg model. Proc. Natl Acad. Sci. USA 119, 2122599119 (2022).

    Google Scholar 

  51. Dzyaloshinsky, I. A thermodynamic theory of ‘weak’ ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958).

    CAS  ADS  Google Scholar 

  52. Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

    CAS  ADS  Google Scholar 

  53. Guzman, J. et al. Long-time-scale dynamics of spin textures in a degenerate F = 1 87Rb spinor Bose gas. Phys. Rev. A 84, 063625 (2011).

    ADS  Google Scholar 

  54. Hild, S. et al. Far-from-equilibrium spin transport in Heisenberg quantum magnets. Phys. Rev. Lett. 113, 147205 (2014).

    PubMed  ADS  Google Scholar 

  55. Neely, T. W., Samson, E. C., Bradley, A. S., Davis, M. J. & Anderson, B. P. Observation of vortex dipoles in an oblate Bose–Einstein condensate. Phys. Rev. Lett. 104, 160401 (2010).

    CAS  PubMed  ADS  Google Scholar 

  56. Kwon, W. J., Moon, G., Seo, S. W. & Shin, Y. Critical velocity for vortex shedding in a Bose–Einstein condensate. Phys. Rev. A 91, 053615 (2015).

    ADS  Google Scholar 

  57. Choi, J.-y., Kwon, W. J. & Shin, Y.-i. Observation of topologically stable 2D skyrmions in an antiferromagnetic spinor Bose–Einstein condensate. Phys. Rev. Lett. 108, 035301 (2012).

    PubMed  ADS  Google Scholar 

  58. Inouye, S. et al. Observation of vortex phase singularities in Bose–Einstein condensates. Phys. Rev. Lett. 87, 080402 (2001).

    CAS  PubMed  ADS  Google Scholar 

  59. Mukherjee, K., Mistakidis, S. I., Kevrekidis, P. G. & Schmelcher, P. Quench induced vortex-bright-soliton formation in binary Bose–Einstein condensates. J. Phys. B: At. Mol. Opt. Phys. 53, 055302 (2020).

    CAS  ADS  Google Scholar 

  60. Kwon, K. et al. Spontaneous formation of star-shaped surface patterns in a driven Bose–Einstein condensate. Phys. Rev. Lett. 127, 113001 (2021).

    CAS  PubMed  ADS  Google Scholar 

  61. Crank, J. & Nicolson, P. A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Math. Proc. Camb. Philos. Soc. 43, 50–67 (1947).

    MathSciNet  ADS  Google Scholar 

  62. Antoine, X., Bao, W. & Besse, C. Computational methods for the dynamics of the nonlinear Schrödinger/Gross–Pitaevskii equations. Comput. Phys. Commun. 184, 2621–2633 (2013).

    MathSciNet  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge discussions with I. Bloch, S.-B. Chung, F. Fang, T. Hilker, G. C. Katsimiga, P. G. Kevrekidis, K. Kim, S. K. Kim, S. Majumder, S. M. Reimann and Y. Shin. K.M. acknowledges the PARAM Shakti at the Indian Institute of Technology Kharagpur, a national supercomputing mission, Government of India, for providing computational resources. J.-y.C. is supported by the Samsung Science and Technology Foundation (Grant No. BA1702-06), a National Research Foundation of Korea (NRF) grant (Project Nos. RS-2023-00207974 and 2023M3K5A1094812) and the KAIST UP programme. S.I.M. and H.R.S. acknowledge support from the NSF through a grant to the Institute for Theoretical Atomic Molecular and Optical Physics at Harvard University. K.M. is financially supported by the Knut and Alice Wallenberg Foundation (Grant No. 2018.0217) and the Swedish Research Council and also acknowledges the Ministry of Human Resource Development, Government of India, for a research fellowship at the early stages of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to the work presented in this manuscript. S.-J.H., K.K., J.S. and J.H. maintained the experimental apparatus and collected the data. S.-J.H., K.K. and J.S. analysed the data. K.M. and S.M. performed the numerical simulations. This work was supervised by S.I.M., H.R.S. and J.-y.C.

Corresponding author

Correspondence to Jae-yoon Choi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Spin populations after quenching the quadratic Zeeman energy.

a, After quenching to the isotropic ferromagnetic phase (q/h = 0 Hz), the atoms in the spin \(\left\vert 0\right\rangle\) state rapidly decay and create spin \(\left\vert \pm 1\right\rangle\) states. The spin population reach a steady state after 100 ms with equal population (n1, n0, n−1)  (1/3, 1/3, 1/3). During the whole coarsening dynamics, the spin population for all spin states remains constant. In the easy-axis ferromagnetic phase (b,q/h = − 120 Hz and c,q/h = − 200 Hz), the initial \(\left\vert 0\right\rangle\) state rapidly disappear and generate equal population of the spin \(\left\vert \pm 1\right\rangle\) state. The residual spin component in the \(\left\vert 0\right\rangle\) state during the coarsening dynamics is attributed to the spin vector along the horizontal plane at the domain wall (Extended Data Fig. 4). Because of the microwave dressing field, the spin population gradually changes. d, Time evolution of spin population imbalance (\({{{\mathscr{I}}}}={n}_{1}-{n}_{-1}\)) under different quadratic Zeeman energy. The population imbalance is noticeable in the deep easy-axis regime (q/h = − 200 Hz), but its impact on the domain length is not significant as shown in Fig. 2. Each data point is obtained with more than 100 independent experimental runs, and the error bars represent one standard error of the mean.

Source data

Extended Data Fig. 2 Full-time evolution of coarsening dynamics and scaling exponents in the easy-axis ferromagnetic phase.

a, Domain length L(t) in the full time evolution accessible during the experiment. Closed (open) circles represent the domain length after (without) deconvolution. Dashed lines represent the scaling time interval t [0.2 s, 0.8 s]. The lower bound for the time interval is chosen to ensure that the condensate enters into the coarsening stage after the quench.The upper bound of the time interval is limited by the finite size of the system and lifetime lifetime of the condensate. b, Dependence of the scaling exponents 1/z on the lower bound for the time interval tL. The error bars indicate the 1σ confidence interval of the fit parameters. c, Number of magnetic domains after the quench. The domain number ND is counted by using the Hoshen-Koppelman algorithm (details are available in Supplementary Information). The domain number follows the power law decay (solid line), NDt−2/z with 1/z = 0.63(4).

Source data

Extended Data Fig. 3 Effect of the microwave dressing on the spinor Bose gas.

a, Long-time evolution of the atom number and b, thermal fraction at q/h = − 120 Hz (square, light blue) and − 200 Hz (circle, dark blue). c, Long-time evolution of the domain length in the easy axis quench q/h = − 200 Hz. After the coarsening terminated (t = 1 s), the domain length is decreased from 61 μm to 57 μm with additional 1 s of hold time. It implies that the domain length during the universal dynamics t [0.2 s, 0.8 s] could be underestimated by 5%. d,e Absorption images (top) and the magnetization density (bottom) at different hold times (see legends). Domain size is reduced as a result of the atom loss. Each data point is obtained with 40 different experimental realisation, and the error bars denote one standard error of the mean.

Source data

Extended Data Fig. 4 Magnetic domain wall in the easy-axis ferromagnetic phase.

a, Magnetization Fz after 1.5 s of hold time, and b, the cross-section profile across the magnetic domain. The solid line is a fit curve \({F}_{z}(r)={F}_{z0}\tanh (r/{\xi }_{d})\) with ξd = 4.5(2) μm. c,d, Magnetization along the horizontal axis Fx. The spin vectors could be aligned on the same axis (c, Bloch or Neel-type domain wall) or point in opposite directions (d, Bloch line). A long wavelength modulation of the horizontal spin vector could imply the presence of spin wave excitations in the magnetic domain.

Source data

Extended Data Fig. 5 Time evolution of spin domains in the isotropic ferromagnetic phase.

a-e, Longitudinal magnetization Fz (upper) and its two-dimensional spin correlation functions Gz(x, y) (below) at various hold times. f-j, Snapshots of transverse magnetization Fx. and the correlation functions Gx(x, y). In contrast to the easy-axis phase, in the spin isotropic point, coarsening dynamics are observed in both axes, and the domain boundaries are much broader than those of the q < 0 spin domains. The spin correlation functions are averaged over 100 different realizations at a given hold time.

Source data

Extended Data Fig. 6 Numeric simulations of the matter-wave interference for the \({{\mathbb{Z}}}_{2}\) spin vortices.

a, Density profile and b, the argument of the transverse spin vector \(\phi ={\tan }^{-1}({F}_{y}/{F}_{x})\) in the x-y plane after t = 3.5 s of domain coarsening dynamics at the spin isotropic point. The spin vortex can be identified from a phase jump around the vortex core (yellow box). c, Three dimensional spin vectors F = (Fx, Fy, Fz) in the x-y plane near the highlighted region (yellow box). Not only the in-plane spin vector but also the longitudinal spin vector turns around the vortex core, indicating the \({{\mathbb{Z}}}_{2}\) spin vortex. d, Simulated images after the matter-wave interference. The positions of the spin vortices are well-identified from fork-shaped patterns in the spin imbalance image. eh, Representative experimental images after the matter-wave interference under various hold times (see distinct rows). All images are obtained by independent experimental runs. In the vortex-free region, the magnetization displays a connected stripe pattern, while the spin vortex shows a dislocation of the stripes to form the two-to-one fork-shaped patterns. The vortex positions are highlighted by yellow circles.

Source data

Supplementary information

Supplementary Information

Supplementary discussion with Figs. 1–5.

Source data

Source Data for Fig. 1

Images for longitudinal magnetization and spin correlation function.

Source Data got Fig. 2

Source data for Fig. 2.

Source Data for Fig. 3

Source data for Fig. 3.

Source Data for Fig. 4

Source data for Fig. 4.

Source Data for Fig. 5

Source data for Fig. 5.

Source Data for Extended Data Fig. 1

Source data for Extended Data Fig. 1.

Source Data for Extended Data Fig. 2

Source data for Extended Data Fig. 2.

Source Data for Extended Data Fig. 3

Source data for Extended Data Fig. 3.

Source Data for Extended Data Fig. 4

Source data for Extended Data Fig. 4.

Source Data for Extended Data Fig. 5

Source data for Extended Data Fig. 5.

Source Data for Extended Data Fig. 6

Source data for Extended Data Fig. 6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huh, S., Mukherjee, K., Kwon, K. et al. Universality class of a spinor Bose–Einstein condensate far from equilibrium. Nat. Phys. 20, 402–408 (2024). https://doi.org/10.1038/s41567-023-02339-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02339-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing