Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Stimulatory effect of splicing factors on transcriptional elongation

Abstract

Transcription and pre-mRNA splicing are tightly coupled gene expression events in eukaryotic cells1,2. An interaction between the carboxy-terminal domain of the largest subunit of RNA polymerase (Pol) II and components of the splicing machinery is postulated to mediate this coupling3,4,5. Here, we show that splicing factors function directly to promote transcriptional elongation, demonstrating that transcription is more intimately coupled to splicing than previously thought. The spliceosomal U small nuclear ribonucleoproteins (snRNPs) interact with human transcription elongation factor TAT-SF1 (refs 6,7,8,9) and strongly stimulate polymerase elongation when directed to an intron-free human immunodeficiency virus-1 (HIV-1) template. This effect is likely to be mediated through the binding of TAT-SF1 to elongation factor P-TEFb10, a proposed component of the transcription elongation complex11,12. Inclusion of splicing signals in the nascent transcript further stimulates transcription, supporting the notion that the recruitment of U snRNPs near the elongating polymerase is important for transcription. Because the TAT-SF1–U snRNP complex also stimulates splicing in vitro, it may serve as a dual-function factor to couple transcription and splicing and to facilitate their reciprocal activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The CYCT1 C-terminal domain interacts with a TAT-SF1-associated transcription elongation activity.
Figure 2: Both the N-terminal RRMs and the C-terminal acidic domain of TAT-SF1 are required for transactivation.
Figure 3: The TAT-SF1-associated U snRNPs are active in both transcription and splicing.
Figure 4: Splicing signals in nascent transcripts stimulate transcription.

Similar content being viewed by others

References

  1. Bentley, D. Coupling RNA polymerase II transcription with pre-mRNA processing. Curr. Opin. Cell Biol. 11, 347–351 (1999).

    Article  CAS  Google Scholar 

  2. Hirose, Y. & Manley, J. L. RNA polymerase II and the integration of nuclear events. Genes Dev. 14, 1415–1429 (2000).

    CAS  PubMed  Google Scholar 

  3. McCracken, S. et al. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 385, 357–361 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Fong, N. & Bentley, D. L. Capping, splicing, and 3′ processing are independently stimulated by RNA polymerase II: different functions for different segments of the CTD. Genes Dev. 15, 1783–1795 (2001).

    Article  CAS  Google Scholar 

  5. Hirose, Y., Tacke, R. & Manley, J. L. Phosphorylated RNA polymerase II stimulates pre-mRNA splicing. Genes Dev. 13, 1234–1239 (1999).

    Article  CAS  Google Scholar 

  6. Kim, J. B., Yamaguchi, Y., Wada, T., Handa, H. & Sharp, P. A. Tat-SF1 protein associates with RAP30 and human SPT5 proteins. Mol. Cell. Biol. 19, 5960–5968 (1999).

    Article  CAS  Google Scholar 

  7. Li, X. Y. & Green, M. R. The HIV-1 Tat cellular coactivator Tat-SF1 is a general transcription elongation factor. Genes Dev. 12, 2992–2996 (1998).

    Article  CAS  Google Scholar 

  8. Zhou, Q. & Sharp, P. A. Tat-SF1: cofactor for stimulation of transcriptional elongation by HIV-1 Tat. Science 274, 605–610 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Parada, C. A. & Roeder, R. G. A novel RNA polymerase II-containing complex potentiates Tat-enhanced HIV-1 transcription. EMBO J. 18, 3688–3701 (1999).

    Article  CAS  Google Scholar 

  10. Price, D. H. P-TEFb, a cyclin-dependent kinase controlling elongation by RNA polymerase II. Mol. Cell. Biol. 20, 2629–2634 (2000).

    Article  CAS  Google Scholar 

  11. Ping, Y. H. & Rana, T. M. Tat-associated kinase (P-TEFb): a component of transcription preinitiation and elongation complexes. J. Biol. Chem. 274, 7399–7404 (1999).

    Article  CAS  Google Scholar 

  12. Zhou, M. et al. Tat modifies the activity of CDK9 to phosphorylate serine 5 of the RNA polymerase II carboxyl-terminal domain during human immunodeficiency virus type 1 transcription. Mol. Cell. Biol. 20, 5077–5086 (2000).

    Article  CAS  Google Scholar 

  13. Dahmus, M. E. Reversible phosphorylation of the C-terminal domain of RNA polymerase II. J. Biol. Chem. 271, 19009–19012 (1996).

    Article  CAS  Google Scholar 

  14. Wei, P., Garber, M. E., Fang, S. M., Fischer, W. H. & Jones, K. A. A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 92, 451–462 (1998).

    Article  CAS  Google Scholar 

  15. Jones, K. A. Taking a new TAK on tat transactivation. Genes Dev. 11, 2593–2599 (1997).

    Article  CAS  Google Scholar 

  16. Garber, M. E. et al. The interaction between HIV-1 Tat and human cyclin T1 requires zinc and a critical cysteine residue that is not conserved in the murine CycT1 protein. Genes Dev. 12, 3512–3527 (1998).

    Article  CAS  Google Scholar 

  17. Peng, J., Zhu, Y., Milton, J. T. & Price, D. H. Identification of multiple cyclin subunits of human P-TEFb. Genes Dev. 12, 755–762 (1998).

    Article  CAS  Google Scholar 

  18. Fong, Y. W. & Zhou, Q. Relief of two built-in autoinhibitory mechanisms in P-TEFb is required for assembly of a multicomponent transcription elongation complex at the human immunodeficiency virus type 1 promoter. Mol. Cell. Biol. 20, 5897–5907 (2000).

    Article  CAS  Google Scholar 

  19. Zhou, Q. & Sharp, P. A. Novel mechanism and factor for regulation by HIV-1 Tat. EMBO J. 14, 321–328 (1995).

    Article  CAS  Google Scholar 

  20. Marciniak, R. A. & Sharp, P. A. HIV-1 Tat protein promotes formation of more-processive elongation complexes. EMBO J. 10, 4189–4196 (1991).

    Article  CAS  Google Scholar 

  21. Yan, D. et al. CUS2, a yeast homolog of human Tat-SF1, rescues function of misfolded U2 through an unusual RNA recognition motif. Mol. Cell. Biol. 18, 5000–5009 (1998).

    Article  CAS  Google Scholar 

  22. Perriman, R. & Ares, M. Jr ATP can be dispensable for prespliceosome formation in yeast. Genes Dev. 14, 97–107 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Krainer, A. R. Pre-mRNA splicing by complementation with purified human U1, U2, U4/U6 and U5 snRNPs. Nucleic Acids Res. 16, 9415–9429 (1988).

    Article  CAS  Google Scholar 

  24. Bach, M., Bringmann, P. & Lührmann, R. Purification of small nuclear ribonucleoprotein particles with antibodies against modified nucleosides of small nuclear RNAs. Methods Enzymol. 181, 232–257 (1990).

    Article  CAS  Google Scholar 

  25. Blencowe, B. J. & Lamond, A. I. Purification and depletion of RNP particles by antisense affinity chromatography. Methods Mol. Biol. 118, 275–287 (1999).

    CAS  PubMed  Google Scholar 

  26. Schnapp, G., Rodi, H. P., Rettig, W. J., Schnapp, A. & Damm, K. One-step affinity purification protocol for human telomerase. Nucleic Acids Res. 26, 3311–3313 (1998).

    Article  CAS  Google Scholar 

  27. Krainer, A. R. & Maniatis, T. Multiple factors including the small nuclear ribonucleoproteins U1 and U2 are necessary for pre-mRNA splicing in vitro. Cell 42, 725–736 (1985).

    Article  CAS  Google Scholar 

  28. Solnick, D. Alternative splicing caused by RNA secondary structure. Cell 43, 667–676 (1985).

    Article  CAS  Google Scholar 

  29. Padgett, R. A., Mount, S. M., Steitz, J. A. & Sharp, P. A. Splicing of messenger RNA precursors is inhibited by antisera to small nuclear ribonucleoprotein. Cell 35, 101–107 (1983).

    Article  CAS  Google Scholar 

  30. Ares, M. Jr, Grate, L. & Pauling, M. H. A handful of intron-containing genes produces the lion's share of yeast mRNA. RNA 9, 1138–1139 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

We thank B. Blencowe for the gift of antisense RNA oligonucleotide and advice on the depletion procedures; E. Labourier, D. Rio, J. Underwood, D. Black and H. Wu for reagents; E. Logue and L. Zhou for technical assistance; and K. Luo, I. von Reis and S. Stroschein for discussions. Supported by grants from the National Institutes of Health to Q.Z. and the University of California Universitywide AIDS Research Program to Y.W.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fong, Y., Zhou, Q. Stimulatory effect of splicing factors on transcriptional elongation. Nature 414, 929–933 (2001). https://doi.org/10.1038/414929a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/414929a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing