Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Plume-like neon in a metasomatic apatite from the Australian lithospheric mantle

Abstract

The nature of metasomatizing fluids and melts in the mantle are of interest for understanding the chemical evolution of the Earth's interior1,2,3. The study of noble-gas isotopes in appropriate mantle-derived samples has the potential to provide valuable insight into this question, by constraining the origin of the fluids and the timing of metasomatic events. Here we report the application of neon-isotope systematics to investigate the metasomatic history of apatite grains in spinel-lherzolite xenoliths from the Australian lithospheric mantle. We find that the apatite has a neon-isotope signature similar to that associated with plume-related volcanism, as is found in Hawaii, whereas coexisting mineral phases (olivine and amphibole) and non-apatite-bearing lherzolites have isotope signatures more typical of mid-ocean-ridge basalts. The occurrence of plume-like neon in the apatite implicates deep plume-like material beneath southeastern Australia as the source of the metasomatizing agent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, Three-isotope plot for neon extracted from apatite, amphibole and olivine separates from the spinel lherzolite BM901, Bullenmerri, Victoria, Australia, and from olivine separates from dry lherzolites from Mt Gambier, South Australia (shown as ‘D’).

Similar content being viewed by others

References

  1. McDonough, W. F. & McCulloch, M. T. The southeast Australian lithospheric mantle: isotopic and geochemical constraints on its growth and evolution. Earth Planet. Sci. Lett. 86, 327–340 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Meen, K. J., Eggler, D. H. & Ayers, J. C. Experimental evidence for very low solubility of rare-earth elements in CO2-rich fluids at mantle conditions. Nature 340, 301–303 (1989).

    Article  ADS  CAS  Google Scholar 

  3. O'Reilly, S. Y. & Griffin, W. L. Mantle-metasomatism beneath western Victoria, Australia: I. Metasomatic processes in Cr-diopside lherzolites. Geochim. Cosmochim. Acta 52, 433–447 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Griffin, W. L., Wass, S. Y. & Hollis, J. D. Ultramafic xenoliths from Bullenmerri and Gnotuk maars, Victoria, Australia: Petrology of sub-continental crust-mantle transition. J. Petrol. 25, 53–87 (1984).

    Article  ADS  CAS  Google Scholar 

  5. Sarda, P., Staudacher, T. & Allègre, C. J. Neon isotopes in submarine basalts. Earth Planet. Sci. Lett. 91, 73–88 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Craig, H. & Lupton, J. E. in The Sea (ed. Emiliani, C.) 391–428 (Wiley, New York, (1981)).

    Google Scholar 

  7. Porcelli, D., O'Nions, R. K. & O'Reilly, S. Y. Helium and strontium isotopes in ultramafic xenoliths. Chem. Geol. 54, 237–249 (1986).

    Article  CAS  Google Scholar 

  8. O'Reilly, S. Y., Griffin, W. L. & Ryan, C. G. Residence of trace elements in metasomatized spinel lherzolite xenoliths: a proton-microprobe study. Contrib. Mineral. Petrol. 109, 93–113 (1991).

    Article  ADS  Google Scholar 

  9. Benkert, J.-P., Baur, H., Signer, P. & Wieler, R. He, Ne, and Ar from the solar wind and solar energetic particles in lunar ilmenites and pyroxenes. J. Geophys. Res. 98, 13147–13162 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Honda, M., McDougall, I., Patterson, D. B., Doulgeris, A. & Clague, D. A. Possible solar noble gas component in Hawaiian basalts. Nature 349, 149–151 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Honda, M., McDougall, I., Patterson, D. B., Doulgeris, A. & Clague, D. A. Noble gases in submarine pillow basalt glasses from Loihi and Kilauea, Hawaii: a solar component in the Earth. Geochim. Cosmochim. Acta 57, 859–874 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Hiyagon, H., Ozima, M., Marty, B., Zashu, S. & Sakai, H. Noble gases in submarine glasses from mid-oceanic ridges and Loihi seamount: constraint on the early history of the Earth. Geochim. Cosmochim. Acta. 56, 1301–1316 (1992).

    Article  ADS  CAS  Google Scholar 

  13. Staudacher, R., Sarda, P. & Allègre, C. J. Noble gas systematics of Réunion Island, Indian Ocean. Chem. Geol. 89, 1–17 (1990).

    Article  ADS  CAS  Google Scholar 

  14. Valbracht, P. J. et al. Helium, neon and argon isotope systematics in Kerguelen ultramafic xenoliths: implication for mantle source signatures. Earth Planet. Sci. Lett. 138, 29–38 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Poreda, R. J. & Farley, K. A. Rare gases in Samoan xenoliths. Earth Planet. Sci. Lett. 113, 129–144 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Kennedy, B. M., Lynch, M. A., Reynolds, J. H. & Smith, S. P. Intensive sampling of noble gases in fluids at Yellowstone: I. Early overview of the data; regional pattern. Geochim. Cosmochim. Acta 49, 1251–1261 (1985).

    Article  ADS  CAS  Google Scholar 

  17. Wellman, P. & McDougall, I. Cainozoic igneous activity in eastern Australia. Tectonophysics 23, 49–45 (1974).

    Article  ADS  CAS  Google Scholar 

  18. McDonough, W. F., McCulloch, M. T. & Sun, S. S. Isotopic and geochemical systematics in Tertiary-Recent basalts from southeastern Australia and implications for the evolution of the sub-continental lithosphere. Geochim. Cosmochim. Acta 49, 2051–2067 (1985).

    Article  ADS  CAS  Google Scholar 

  19. O'Reilly, S. Y. & Zhang, M. Geochemical characteristics of lava-field basalts from eastern Australia and inferred sources: connections with the subcontinental lithospheric mantle? Contrib. Mineral. Petrol. 121, 148–170 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Cull, J. P. An appraisal of Australian heatflow data. Bur. Miner. Resour. J. Austr. Geol. Geophys. 7, 11–21 (1982).

    Google Scholar 

  21. Cull, J. P. & Conley, D. Geothermal gradients and heat flow in Australian Sedimentary basins. Bur. Miner. Resour. J. Austr. Geol. Geophys. 8, 329–337 (1983).

    Google Scholar 

  22. Zielhuis, A. & Hilst, R. D. v. d. Upper mantle shear velocity beneath eastern Australia from inversion of waveforms from SKIPPY portable arrays. Geophys. J. Int. 127, 1–16 (1996).

    Article  ADS  Google Scholar 

  23. Wass, S. Y. in The Mantle Sample: Inclusions in Kimberlites and Other Volcanics (Proc. 2nd Int. Kimberlite Conf., 2) (eds Boyd, F. R. & Meyer, H. O. A.) 366–373 (Am. Geophys. Un., Washington, (1979)).

    Book  Google Scholar 

  24. Anderson, T., O'Reilly, S. Y. & Griffin, W. L. The trapped fluid phase from Victoria, Australia: implications for mantle metasomatism. Contrib. Mineral. Petrol. 88, 72–85 (1984).

    Article  ADS  Google Scholar 

  25. O'Reilly, S. Y. in Mantle Xenoliths (ed. Nixon, P. H.) 661–6 (Wiley, Chichester, (1987)).

    Google Scholar 

  26. Yaxley, G. M., Crawford, A. J. & Green, D. H. Evidence for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia. Earth Planet. Sci. Lett. 107, 305–317 (1991).

    Article  ADS  CAS  Google Scholar 

  27. Griffin, W. L., O'Reilly, S. Y. & Stabel, A. Mantle metasomatism beneath western Victoria, Australia: II. Isotopic geochemistry of Cr-diopside lherzolites and Al-augite pyroxenites. Geochim. Cosmochim. Acta 52, 449–459 (1988).

    Article  ADS  CAS  Google Scholar 

  28. Wetherill, G. W. Variations in the isotopic abundances of neon and argon extracted from radioactive minerals. Phys. Rev. 96, 679–683 (1954).

    Article  ADS  CAS  Google Scholar 

  29. Hünemohr, H. Edelgase in U- und Th-reichen Mineralen und die Bestimmung der 21Ne-Dicktarget-Ausbeute der 18O(α,n)21Ne-kernreaction im Bereich 4.0–8.8 MeV. Thesis, Johannes-Gutenberg-Universität (1989).

  30. Yatsevich, I. & Honda, M. Production of nucleogenic neon in the Earth from natural radioactive decay. J. Geophys. Res. 102, 10291–10298 (1997).

    Article  ADS  CAS  Google Scholar 

  31. Barton, C. E. & McElhinny, M. W. A10000 yr geomagnetic secular variation record from three Australian maars. Geophys. J. R. Astron. Soc. 67, 465–485 (1981).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank W. Griffin for advising on appropriate samples for this study, and for comments on the manuscript; J. M. McCarron for providing the Mr Gambier samples; and G. Yaxley and M. Handler for comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Matsumoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsumoto, T., Honda, M., McDougall, I. et al. Plume-like neon in a metasomatic apatite from the Australian lithospheric mantle. Nature 388, 162–164 (1997). https://doi.org/10.1038/40606

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/40606

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing