Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

DNA-replication checkpoint control at the Drosophila midblastula transition

Abstract

Embryogenesis is typically initiated by a series of rapid mitotic divisions that are under maternal genetic control1. The switch to zygotic control of embryogenesis at the midblastula transition is accompanied by significant increases in cell-cycle length and gene transcription, and changes in embryo morphology2,3. Here we show that mutations in the grapes (grp) checkpoint 1 kinase homologue4 in Drosophila block the morphological and biochemical changes that accompany the midblastula transition, lead to a continuation of the maternal cell-cycle programme, and disrupt DNA-replication checkpoint control of cell-cycle progression. The timing of the midblastula transition is controlled by the ratio of nuclei to cytoplasm (the nucleocytoplasmic ratio), suggesting that this developmental transition is triggered by titration of a maternal factor by the increasing mass of nuclear material that accumulates during the rapid embryonic mitoses5,6,7,8,9. Our observations support a model for cell-cycle control at the midblastula transition in which titration of a maternal component of the DNA-replication machinery slows DNA synthesis and induces a checkpoint-dependent delay in cell-cycle progression10. This delay may allow both completion of S phase and transcription of genes that initiate the switch to zygotic control of embryogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: fs(A)4 mutant embryos fail to undergo changes in cell-cycle timing and embryo morphology associated with the MBT.
Figure 2: The fs(A)4 mutation prevents inhibitory tyrosine phosphorylation of Cdc2 and String phosphatase downregulation at the MBT.
Figure 3: Expression pattern of early zygotic transcripts is impaired in fs(A)4 mutants.
Figure 4: The grp gene is required to delay mitosis in response to the DNA-synthesis inhibitor aphidicolin.

Similar content being viewed by others

References

  1. Gilbert, S. F. Developmental Biology 3rd edn, 75–114 (Sinaur, Sunderland, MA, (1991)).

    Google Scholar 

  2. Newport, J. & Kirschner, M. Amajor developmental transition in early Xenopus embryos: I. characterization and timing of cellular changes at the midblastula stage. Cell 30, 675–686 (1982).

    Article  CAS  Google Scholar 

  3. Foe, V. E., Odell, G. M. & Edgar, B. A. in The Development of Drosophila melanogaster(ed Bate, M. & Martinez Arias, A.) 149–300 (Cold Spring Harbor Laboratory Press, New York, (1993)).

    Google Scholar 

  4. Fogarty, P. et al. grp, a Drosphila gene with homology ot the S. pombe chk1/rad27 checkpoint gene, is required for the fidelity of the late syncytial divisions. Curr. Biol.(in the press).

  5. Edgar, B. A., Kiehle, C. P. & Schubinger, G. Cell cycle control by the nucleo-cytoplasmic ratio in early Drosophila development. Cell 44, 365–372 (1986).

    Article  CAS  Google Scholar 

  6. Yasuda, G. K., Baker, J. & Schubinger, G. Temporal regulation of gene expression in the blastoderm Drosophila embryo. Gen. Dev. 5, 1800–1812 (1991).

    Article  CAS  Google Scholar 

  7. Pritchard, D. K. & Schubinger, G. Activation of transcription in Drosophila embryos is a gradual process mediated by the nucleocytoplasmic ratio. Gen. Dev. 10, 1131–1142 (1996).

    Article  CAS  Google Scholar 

  8. Clute, P. & Masui, Y. Regulation of the appearance of division asynchrony and microtubule-dependent chromosome cycles in Xenopus laevis embryos. Dev. Biol. 171, 273–285 (1995).

    Article  CAS  Google Scholar 

  9. Kane, D. A. & Kimmel, C. B. The zebrafish midblastula transition. Development 119, 447–456 (1993).

    CAS  PubMed  Google Scholar 

  10. Dasso, M. & Newport, J. W. Completion of DNA replication is monitored by a feedback system that controls the initiaiton of mitosis in vitro: studies in Xenopus. Cell 61, 811–823 (1990).

    Article  CAS  Google Scholar 

  11. Foe, V. E. & Alberts, B. M. Studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation in Drosphila embryogenesis. J. Cell Sci. 61, 31–71 (1983).

    CAS  PubMed  Google Scholar 

  12. Sullivan, W., Fogarty, P. & Theurkauf, W. E. Mutations affecting the cytoskeletal organization of syncytial Drosophila embryos. Development 18, 1245–1254 (1993).

    Google Scholar 

  13. Matthies, H. J., McDonald, H. B., Goldstein, L. S. & Theurkauf, W. E. Anastral meiotic spindle morphogenesis: role of the non-claret disjunctional kinesin-like protein. J. Cll Biol. 341, 455–464 (1996).

    Article  Google Scholar 

  14. Kellogg, D. R., Mitchison, T. J. & Alberts, B. M. Behavior of microtubules and actin filaments in living Drosophila embryos. Development 103, 675–686 (1988).

    CAS  PubMed  Google Scholar 

  15. Edgar, B. A., Sprenger, F., Duronio, R. J., Leopold, P. & O'Farrell, P. H. Distinct molecular mechanisms regulate cell cycle timing at successive stages of Drosophila embryogenesis. Gen. Dev. 8, 440–452 (1994).

    Article  CAS  Google Scholar 

  16. Elledge, S. J. Cell cycle checkpoint: preventing an identity crisis. Science 274, 1664–1672 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Edgar, B. A. & Datar, S. A. Zygotic degradation of two maternal Cdc25 mRNAs terminates Drosophila's early cell cycle program. Gen. Dev. 10, 1966–1977 (1996).

    Article  CAS  Google Scholar 

  18. Campbell, S. D., Sprenger, F., Edgar, B. A. & O'Farrel, P. H. Drosophila Wee 1 kinase rescues fission yeast from mitotic catastrophe and phosphorylates Drosophila Ccd2 in nitro. Mol. Biol. Cell 6, 1333–1347 (1995).

    Article  CAS  Google Scholar 

  19. Klinger, M. & Gergen, J. P. Regulation of runt transcription by Drosophila segmentation genes. Mech. Dev. 43, 3–19 (1993).

    Article  Google Scholar 

  20. Cooley, L., Kelley, R. & Spradling, A. Insertional mutagenesis of the Drosophila genome with single P elements. Science 239, 1121–1128 (1988).

    Article  ADS  CAS  Google Scholar 

  21. Fogarty, P., Kalpin, R. F. & Sullivan, W. The Drosophila maternal-effect mutation grapes causes a metaphase arrest at nuclear cycle 13. Development 120, 2131–2142 (1994).

    CAS  PubMed  Google Scholar 

  22. Francesconi, S., Grenon, M., Bouvier, D. & Baldacci, G. p56chk1protein kinase is required for the DNA replication checkpoint at 37 °C in fission yeast. EMBO J. 16, 1332–1341 (1997).

    Article  CAS  Google Scholar 

  23. Walworth, N. C. & Bernards, R. rad-dependent response of the chk1-encoded protein kinase at the DNA damage checkpoint. Science 271, 353–356 (1996).

    Article  ADS  CAS  Google Scholar 

  24. Raff, J. W. & Glover, D. M. Nuclear and cytoplasmic cycles continue in Drosophila embryos in which DNA synthesis is inhibited with aphidicolin. J. Cell Biol. 107, 2009–2019 (1988).

    Article  CAS  Google Scholar 

  25. Banga, S. S., Shenkar, R. & Boyd, J. B. Hypersensitivity of Drosophila mei-41 mutants to hydroxyurea is associated with reduced mitotic chromosome stabiity. Mutant. Res. 163, 157–165 (1986).

    Article  CAS  Google Scholar 

  26. Shermoen, A. W. & O'Farrell, P. H. Progression of the cell cycle through mitosis leads to abortion of nascent transcripts. Cell 67, 303–310 (1991).

    Article  CAS  Google Scholar 

  27. Ruden, D. M. & Jackle, H. Mitotic delay dependent survival identifies components of cell cycle control in the Drosophila blastoderm. Development 121, 63–73 (1995).

    CAS  PubMed  Google Scholar 

  28. Theurkauf, W. E. in Methods of Cell Biology: Drosophila melanogaster: Practical Uses in Cell and Molecular Biology(eds Goldstein, L. S. B. & Fryberg, E.) 489–505 (Academic, New York, (1994).

    Google Scholar 

  29. Tautz, D., Pfeifle, C. Anon-radioactive in situ hybridization method for the localization of specific RNA's in Drosophila embryo's reveals translational control of the segmentation gene hunchback. Chromosoma 98, 81–85 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Sullivan, S. Campbell, B. Holdener, J. Kramer, N. Hollingsworth and B. Eggen for comments on the manuscript; B. Edgar and P. O'Farrell for discussions; P. Gergen for probes and advice on whole-mount in situ hybridization; P. Fogarty and W. Sullivan for sharing unpublished data and providing grp cDNA clones; R. S. Hawley and colleagues at the University of California at Davis for providing their collection of P-element-associated maternal-effect lethal mutations; and B. Edgar for anti-Cdc2 antibodies and advice on cell-cycle control during early embryogenesis. This work was supported by a fellowship from the NWO to O.C.M.S. and grants from the NIH and American Cancer Society to W.E.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William E. Theurkauf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sibon, O., Stevenson, V. & Theurkauf, W. DNA-replication checkpoint control at the Drosophila midblastula transition. Nature 388, 93–97 (1997). https://doi.org/10.1038/40439

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/40439

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing