Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The discoidin domain receptor 1 as a novel susceptibility gene for schizophrenia

Abstract

Evidence suggests that myelin alterations could predispose to schizophrenia. Reduced expression of several myelin genes has been observed in schizophrenia patients. Recently, we identified the discoidin domain receptor 1 (DDR1; located at human chromosome 6p21.3) as a myelin gene in the mouse model and in a human oligodendroglial cell line. In the present study we screened for single nucleotide polymorphisms (SNPs) in the DNA from 100 schizophrenia patients. We identified a novel mutation within exon 10 that produces the amino-acid substitution N502S in the a–d isoforms, and M475V in the e isoform. However the frequency of the mutation (2%) was similar in schizophrenia patients and in control subjects. In a case–control assessment with 389 schizophrenic patients and 615 controls, we identified one SNP (SNP9, rs1049623) associated with schizophrenia (odds ratio=1.44, 95% confidence interval: 1.15–1.79, adjusted P=0.0016). This association was confirmed in haplotype analysis; the SNPs 9–10–11 (rs1049623, rs2267641 and rs2239518) haplotype remaining significant even after adjustment for multiple testing (adjusted P=0.0136). Of note was a strong gender dependence in the association, that is, statistical significance restricted to men (adjusted P-value=0.0002). Regression analysis of DDR1 mRNA expression in peripheral blood lymphocytes from schizophrenia patients showed that the presence of the G allele significantly decreased the relative number of mRNA copies in a dose-dependent manner (P=0.003). These data suggest that the risk haplotype tags a cis-acting variant involved in the transcription regulation system of the gene. In conclusion, we propose the DDR1 as a new susceptibility gene for schizophrenia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. O'Donovan MC, Williams NM, Owen MJ . Recent advances in the genetics of schizophrenia. Hum Mol Genet 2003; 12: R125–R133.

    Article  CAS  Google Scholar 

  2. Owen MJ, Williams NM, O'Donovan MC . The molecular genetics of schizophrenia: new findings promise new insights. Mol Psychiatry 2004; 9: 14–27.

    Article  CAS  Google Scholar 

  3. Kendler KS . Schizophrenia genetics and dysbindin: a corner turned? Am J Psychiatry 2004; 161: 1533–1536.

    Article  Google Scholar 

  4. Liu X, Qin W, He G, Yang T, Chen Q, Zhou J et al. A family-based association study of the MOG gene with schizophrenia in the Chinese population. Schizophr Res 2005; 73: 275–280.

    Article  Google Scholar 

  5. Saviouk V, Chow EW, Bassett AS, Brzustowicz LM . Tumor necrosis factor promoter haplotype associated with schizophrenia reveals a linked locus on 1q44. Mol Psychiatry 2005; 10: 375–383.

    Article  CAS  Google Scholar 

  6. Hashimoto R, Yoshida M, Ozaki N, Yamanouchi Y, Iwata N, Suzuki T et al. Association analysis of the −308G>A promoter polymorphism of the tumor necrosis factor alpha (TNF-alpha) gene in Japanese patients with schizophrenia. J Neural Transm 2004; 111: 217–221.

    Article  CAS  Google Scholar 

  7. Schwab SG, Mondabon S, Knapp M, Albus M, Hallmayer J, Borrmann-Hassenbach M et al. Association of tumor necrosis factor alpha gene −G308A polymorphism with schizophrenia. Schizophr Res 2003; 65: 19–25.

    Article  Google Scholar 

  8. Glatt SJ, Wang RS, Yeh YC, Tsuang MT, Faraone SV . Five NOTCH4 polymorphisms show weak evidence for association with schizophrenia: evidence from meta-analyses. Schizophr Res 2005; 73: 281–290.

    Article  Google Scholar 

  9. Prasad S, Chowdari KV, Wood J, Bhatia T, Despahande SN, Nimgaonkar VL et al. Association analysis of NOTCH 4 polymorphisms with schizophrenia among two independent family based samples. Am J Med Genet B Neuropsychiatr Genet 2004; 131: 6–9.

    Article  Google Scholar 

  10. Luo X, Klempan TA, Lappalainen J, Rosenheck RA, Charney DS, Erdos J et al. NOTCH4 gene haplotype is associated with schizophrenia in African Americans. Biol Psychiatry 2004; 55: 112–117.

    Article  CAS  Google Scholar 

  11. Skol AD, Young KA, Tsuang DW, Faraone SV, Haverstock SL, Bingham S et al. Modest evidence for linkage and possible confirmation of association between NOTCH4 and schizophrenia in a large veterans affairs cooperative study sample. Am J Med Genet B Neuropsychiatr Genet 2003; 118: 8–15.

    Article  Google Scholar 

  12. Wei J, Hemmings GP . The NOTCH4 locus is associated with susceptibility to schizophrenia. Nat Genet 2000; 25: 376–377.

    Article  CAS  Google Scholar 

  13. Wei J, Hemmings GP . TNXB locus may be a candidate gene predisposing to schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2004; 125: 43–49.

    Article  Google Scholar 

  14. Bray NJ, Preece A, Williams NM, Moskvina V, Buckland PR, Owen MJ et al. Haplotypes at the dystrobrevin binding protein 1 (DTNBP1) gene locus mediate risk for schizophrenia through reduced DTNBP1 expression. Hum Mol Genet 2005; 14: 1947–1954.

    Article  CAS  Google Scholar 

  15. Vogel W . Discoidin domain receptors: structural relations and functional implications. FASEB J 1999; 13: S77–S82.

    Article  CAS  Google Scholar 

  16. Baumgartner S, Hofmann K, Chiquet-Ehrismann R, Bucher P . The discoidin domain family revisited: new members from prokaryotes and a homology-based fold prediction. Protein Sci 1998; 7: 1626–1631.

    Article  CAS  Google Scholar 

  17. He Z, Tessier-Lavigne M . Neuropilin is a receptor for the axonal chemorepellent semaphorin III. Cell 1997; 90: 739–751.

    Article  CAS  Google Scholar 

  18. Peles E, Nativ M, Lustig M, Grumet M, Schilling J, Martinez R et al. Identification of a novel contactin-associated transmembrane receptor with multiple domains implicated in protein–protein interactions. EMBO J 1997; 16: 978–988.

    Article  CAS  Google Scholar 

  19. Sauer CG, Gehrig A, Warneke-Wittstock R, Marquardt A, Ewing CC, Gibson A et al. Positional cloning of the gene associated with X-linked juvenile retinoschisis. Nat Genet 1997; 17: 164–170.

    Article  CAS  Google Scholar 

  20. Alves F, Saupe S, Ledwon M, Schaub F, Hiddemann W, Vogel WF et al. Identification of two novel, kinase-deficient variants of discoidin domain receptor 1: differential expression in human colon cancer cell lines. FASEB J 2001; 15: 1321–1323.

    Article  CAS  Google Scholar 

  21. Zerlin M, Julius MA, Goldfarb M . NEP: a novel receptor-like tyrosine kinase expressed in proliferating neuroepithelia. Oncogene 1993; 8: 2731–2739.

    CAS  PubMed  Google Scholar 

  22. Sanchez MP, Tapley P, Saini SS, He B, Pulido D, Barbacid M et al. Multiple tyrosine protein kinases in rat hippocampal neurons: Isolation of ptk-3, a receptor expressed in proliferative zones of the developing brain. Proc Natl Acad Sci USA 1994; 91: 1819–1823.

    Article  CAS  Google Scholar 

  23. Bhatt RS, Tomoda T, Fang Y, Hatten ME . Discoidin domain receptor 1 functions in axon extension of cerebellar granule neurons. Genes Dev 2000; 14: 2216–2228.

    Article  CAS  Google Scholar 

  24. Franco-Pons N, Virgos C, Vogel WF, Urena JM, Soriano E, Del Rio JA et al. Expression of discoidin domain receptor 1 during mouse brain development follows the progress of myelination. Neuroscience 2006; 140: 463–475.

    Article  CAS  Google Scholar 

  25. Davis KL, Stewart DG, Friedman JI, Buchsbaum M, Harvey PD, Hof PR et al. White matter changes in schizophrenia: evidence for myelin-related dysfunction. Arch Gen Psychiatry 2003; 60: 443–456.

    Article  Google Scholar 

  26. Woo TU, Crowell AL . Targeting synapses and myelin in the prevention of schizophrenia. Schizophr Res 2005; 73: 193–207.

    Article  Google Scholar 

  27. Peirce TR, Bray NJ, Williams NM, Norton N, Moskvina V, Preece A et al. Convergent evidence for 2′,3′-cyclic nucleotide 3′-phosphodiesterase as a possible susceptibility gene for schizophrenia. Arch Gen Psychiatry 2006; 63: 18–24.

    Article  CAS  Google Scholar 

  28. Dracheva S, Davis KL, Chin B, Woo DA, Schmeidler J, Haroutunian V et al. Myelin-associated mRNA and protein expression deficits in the anterior cingulate cortex and hippocampus in elderly schizophrenia patients. Neurobiol Dis 2006; 21: 531–540.

    Article  CAS  Google Scholar 

  29. McInnes LA, Lauriat TL . RNA metabolism and dysmyelination in schizophrenia. Neurosci Biobehav Rev 2006; 30: 551–561.

    Article  CAS  Google Scholar 

  30. Vazquez-Barquero JL, Gaite L, Artal Simon J, Arenal A, Herrera Castanedo S, Diez Manrique JF et al. Development and verification of the Spanish version of the ‘scanning system’ psychiatric interview ‘questionnaires for clinical evaluation in neuropsychiatry’. Actas Luso Esp Neurol Psiquiatr Cienc Afines 1994; 22: 109–120.

    CAS  PubMed  Google Scholar 

  31. Valero J, Martorell L, Marine J, Vilella E, Labad A . Anticipation and imprinting in Spanish families with schizophrenia. Acta Psychiatr Scand 1998; 97: 343–350.

    Article  CAS  Google Scholar 

  32. Lobo A, Perez-Echeverria MJ, Artal J . Validity of the scaled version of the general health questionnaire (GHQ-28) in a Spanish population. Psychol Med 1986; 16: 135–140.

    Article  CAS  Google Scholar 

  33. Rozen S, Skaletsky H . Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 2000; 132: 365–386.

    CAS  Google Scholar 

  34. den Dunnen JT, Antonarakis SE . Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Hum Mutat 2000; 15: 7–12.

    Article  CAS  Google Scholar 

  35. Costas J, Torres M, Cristobo I, Phillips C, Carracedo A . Relative efficiency of the linkage disequilibrium mapping approach in detecting candidate genes for schizophrenia in different European populations. Genomics 2005; 86: 280–286.

    Article  CAS  Google Scholar 

  36. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  Google Scholar 

  37. Dudbridge F . Pedigree disequilibrium tests for multilocus haplotypes. Genet Epidemiol 2003; 25: 115–121.

    Article  Google Scholar 

  38. Pritchard JK, Stephens M, Rosenberg NA, Donnelly P . Association mapping in structured populations. Am J Hum Genet 2000; 67: 170–181.

    Article  CAS  Google Scholar 

  39. Brunak S, Engelbrecht J, Knudsen S . Prediction of human mRNA donor and acceptor sites from the DNA sequence. J Mol Biol 1991; 220: 49–65.

    Article  CAS  Google Scholar 

  40. Reese MG, Eeckman FH, Kulp D, Haussler D . Improved splice site detection in genie. J Comput Biol 1997; 4: 311–323.

    Article  CAS  Google Scholar 

  41. Colhoun HM, McKeigue PM, Davey Smith G . Problems of reporting genetic associations with complex outcomes. Lancet 2003; 361: 865–872.

    Article  Google Scholar 

  42. Hennah W, Varilo T, Kestila M, Paunio T, Arajarvi R, Haukka J et al. Haplotype transmission analysis provides evidence of association for DISC1 to schizophrenia and suggests sex-dependent effects. Hum Mol Genet 2003; 12: 3151–3159.

    Article  CAS  Google Scholar 

  43. Shifman S, Bronstein M, Sternfeld M, Pisante-Shalom A, Lev-Lehman E, Weizman A et al. A highly significant association between a COMT haplotype and schizophrenia. Am J Hum Genet 2002; 71: 1296–1302.

    Article  CAS  Google Scholar 

  44. Mukai J, Liu H, Burt RA, Swor DE, Lai WS, Karayiorqou M et al. Evidence that the gene encoding ZDHHC8 contributes to the risk of schizophrenia. Nat Genet 2004; 36: 725–731.

    Article  CAS  Google Scholar 

  45. Tsunoda T, Lathrop GM, Sekine A, Yamada R, Takahashi A, Ohnishi Y et al. Variation of gene-based SNPs and linkage disequilibrium patterns in the human genome. Hum Mol Genet 2004; 13: 1623–1632.

    Article  CAS  Google Scholar 

  46. Stenzel A, Lu T, Koch WA, Hampe J, Guenter SM, De la Vega FM et al. Patterns of linkage disequilibrium in the MHC region on human chromosome 6p. Hum Genet 2004; 114: 377–385.

    Article  CAS  Google Scholar 

  47. Schwab SG, Hallmayer J, Freimann J, Lerer B, Albus M, Borrmann-Hassenbach M et al. Investigation of linkage and association/linkage disequilibrium of HLA A-, DQA1-, DQB1-, and DRB1-alleles in 69 sib-pair- and 89 trio-families with schizophrenia. Am J Med Genet 2002; 114: 315–320.

    Article  Google Scholar 

  48. Bartzokis G . Schizophrenia: breakdown in the well-regulated lifelong process of brain development and maturation. Neuropsychopharmacology 2002; 27: 672–683.

    Article  Google Scholar 

  49. Uranova N, Orlovskaya D, Vikhreva O, Zimina I, Kolomeets N, Vostrikov V et al. Electron microscopy of oligodendroglia in severe mental illness. Brain Res Bull 2001; 55: 597–610.

    Article  CAS  Google Scholar 

  50. Uranova NA, Vostrikov VM, Orlovskaya DD, Rachmanova VI . Oligodendroglial density in the prefrontal cortex in schizophrenia and mood disorders: a study from the stanley neuropathology consortium. Schizophr Res 2004; 67: 269–275.

    Article  Google Scholar 

  51. Hof PR, Haroutunian V, Copland C, Davis KL, Buxbaum JD . Molecular and cellular evidence for an oligodendrocyte abnormality in schizophrenia. Neurochem Res 2002; 27: 1193–1200.

    Article  CAS  Google Scholar 

  52. Hof PR, Haroutunian V, Friedrich Jr VL, Byne W, Buitron C, Perl DP et al. Loss and altered spatial distribution of oligodendrocytes in the superior frontal gyrus in schizophrenia. Biol Psychiatry 2003; 53: 1075–1085.

    Article  CAS  Google Scholar 

  53. Tkachev D, Mimmack ML, Ryan MM, Wayland M, Freeman T, Jones PB et al. Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 2003; 362: 798–805.

    Article  CAS  Google Scholar 

  54. Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD et al. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 2001; 98: 4746–4751.

    Article  CAS  Google Scholar 

  55. Katsel P, Davis KL, Haroutunian V . Variations in myelin and oligodendrocyte-related gene expression across multiple brain regions in schizophrenia: a gene ontology study. Schizophr Res 2005; 79: 157–173.

    Article  Google Scholar 

  56. Black DN, Taber KH, Hurley RA . Metachromatic leukodystrophy: a model for the study of psychosis. J Neuropsychiatry Clin Neurosci 2003; 15: 289–293.

    Article  Google Scholar 

  57. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B et al. The structure of haplotype blocks in the human genome. Science 2002; 296: 2225–2229.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Lídia Figuera and Carme Arbos (BioBanc IRCIS, Reus, Spain), and María Torres and Inés Quintela (Centro Nacional de Genotipado, CeGen, Santiago de Compostela, Spain) for their technical assistance. This study was supported, in part, by Grants from the Spanish Ministry of Health (RETIC G03/184 and PI020498) and The Stanley Medical Research Institute (03R-392).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Vilella.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roig, B., Virgos, C., Franco, N. et al. The discoidin domain receptor 1 as a novel susceptibility gene for schizophrenia. Mol Psychiatry 12, 833–841 (2007). https://doi.org/10.1038/sj.mp.4001995

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001995

Keywords

This article is cited by

Search

Quick links