Decrease of cardiac chaos in congestive heart failure


The electrical properties of the mammalian heart undergo many complex transitions in normal and diseased states1,2,3,4,5,6,7. It has been proposed that the normal heartbeat may display complex nonlinear dynamics, including deterministic chaos8,9, and that such cardiac chaos may be a useful physiological marker for the diagnosis10,11,12 and management13,14 of certain heart trouble. However, it is not clear whether the heartbeat series of healthy and diseased hearts are chaotic or stochastic15,16,17, or whether cardiac chaos represents normal or abnormal behaviour18. Here we have used a highly sensitive technique, which is robust to random noise, to detect chaos19. We analysed the electrocardiograms from a group of healthy subjects and those with severe congestive heart failure (CHF), a clinical condition associated with a high risk of sudden death. The short-term variations of beat-to-beat interval exhibited strongly and consistently chaotic behaviour in all healthy subjects, but were frequently interrupted by periods of seemingly non-chaotic fluctuations in patients with CHF. Chaotic dynamics in the CHF data, even when discernible, exhibited a high degree of random variability over time, suggesting a weaker form of chaos. These findings suggest that cardiac chaos is prevalent in healthy heart, and a decrease in such chaos may be indicative of CHF.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Characteristics of heartbeat data.
Figure 2: Chaos analysis of heartbeat series.
Figure 3: Chaos analysis of heartbeat series.
Figure 4: Chaos analysis of heartbeat series.
Figure 5: Variability of parameter estimates corresponding to all 500-beat data segments that were identified as chaotic in Fig. 2
Figure 6: Variability of parameter estimates corresponding to all 500-beat data segments that were identified as chaotic in Fig. 2


  1. 1

    Smith, J. M. & Cohen, R. J. Simple finite-element model accounts for wide range of cardiac dysrhythmias. Proc. Natl Acad. Sci. USA 81, 233–237 (1984).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Chialvo, D. R. & Jalife, J. Nonlinear dynamics of cardiac excitation and impulse propagation. Nature 330, 749–752 (1987).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Chialvo, D. R., Gilmour, R. F. & Jalife, J. Low-dimensional chaos in cardiac tissue. Nature 343, 653–657 (1990).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Jalife, J. Ann. NY Acad. Sci. 591((1990)).

    Google Scholar 

  5. 5

    Davidenko, J. M., Pertsov, R. S., Baxter, W. & Jalife, J. Stationary and drifting spiral waves of excitation in isolated cardiac muscle. Nature 355, 349–351 (1989).

    ADS  Article  Google Scholar 

  6. 6

    Winfree, A. T. Electrical turbulence in three-dimensional heart muscle. Science 266, 1003–1006 (1994).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Glass, L. Dynamics of cardiac arrhythmias. Phys. Today 40–45 (1996).

  8. 8

    Goldberger, A. L. Is the normal heartbeat chaotic or homeostatic? News Physiol. Sci. 6, 87–91 (1991).

    CAS  PubMed  Google Scholar 

  9. 9

    Sugihara, G., Allan, W., Sobel, D. & Allan, K. D. Nonlinear control of heart rate variability in human infants. Proc. Natl Acad. Sci. USA 93, 2608–2613 (1996).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Denton, T. A., Diamond, G. A., Helfant, R. H., Khan, S. & Karagueuzian, H. Fascinating rhythm: A primer on chaos theory and its application to cardiology. Am. Heart J. 120, 1419–1440 (1990).

    CAS  Article  Google Scholar 

  11. 11

    Skinner, J. E., Goldberger, A. L., Mayer-Kress, G. & Ideker, R. E. Chaos in the heart: Implications for clinical cardiology. Biotechnology 8, 1018–1024 (1990).

    Google Scholar 

  12. 12

    Goldberger, A. L. Nonlinear dynamics for clinicians: Chaos theory, fractals and complexity at the bedside. Lancet 347, 1312–1314 (1996).

    CAS  Article  Google Scholar 

  13. 13

    Garfinkel, A., Spano, M. L., Ditto, W. L. & Weiss, J. N. Controlling cardiac chaos. Science 257, 1230–1235 (1992).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Garfinkel, A., Weiss, J. N., Ditto, W. L. & Spano, M. L. Chaos cotnrol of cardiac arrhythmias. Trends Cardiovasc. Med. 5, 76–80 (1995).

    CAS  Article  Google Scholar 

  15. 15

    Kaplan, D. T. & Cohen, R. J. Is fibrillation chaos? Circ. Res. 67, 886–892 (1990).

    CAS  Article  Google Scholar 

  16. 16

    Kanters, J. K., Holstein-Rathlou, N.-H. & Agner, E. Lack of evidence for low-dimensional chaos in heart rate variability. J. Cardiovasc. Electrophysiol. 5, 591–601 (1994).

    CAS  Article  Google Scholar 

  17. 17

    Turcott, R. G. & Teich, M. C. Fractal character of the electrocardiogram: Distinguishing heart-failure and normal patients. Ann. Biomed. Eng. 24, 269–293 (1996).

    CAS  Article  Google Scholar 

  18. 18

    Glass, L. Is cardiac chaos normal or abnormal? J. Cardiovasc. Electrophysiol. 1, 481–482 (1990).

    Article  Google Scholar 

  19. 19

    Barahona, M. & Poon, C.-S. Detection of nonlinear dynamics in short, noisy time series. Nature 381, 215–217 (1996).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Peng, C. K., Havlin, S., Stanley, H. E. & Goldberger, A. L. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5, 82–87 (1995).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Ivanov, P. C. et al. Scaling behaviour of heartbeat intervals obtained by wavelet-based time-series analysis. Nature 383, 323–327 (1996).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Goldberger, A. L., Rigney, D. R., Mietus, J., Antman, E. W. & Greenwald, S. Nonlinear dynamics in sudden cardiac death syndrome: heartrate oscillations and bifurcations. Experientia 44, 983–987 (1988).

    CAS  Article  Google Scholar 

  23. 23

    Casolo, G., Balli, E., Taddei, T., Amuhasi, J. & Gori, C. Decreased spontaneous heart rate variability on congestive heart failure. Am. J. Cardiol. 64, 1162–1167 (1989).

    CAS  Article  Google Scholar 

  24. 24

    Grebogi, C., Ott, E., Pelikan, S. & Yorke, J. A. Strange attractors that are not chaotic. Physica D 13, 261–268 (1984).

    ADS  MathSciNet  Article  Google Scholar 

  25. 25

    Pomeau, Y. & Manneville, P. Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys. 74, 189–197 (1980).

    ADS  MathSciNet  Article  Google Scholar 

  26. 26

    Skinner, J. E., Pratt, C.-M. & Vybiral, T. A. Reduction in the correlation dimension of heartbeat intervals precedes imminent ventricular fibrillation in human subjects. Am. Heart J. 125, 731–743 (1993).

    CAS  Article  Google Scholar 

Download references


We thank A. L. Goldberger and R. G. Mark for discussions and comments on the manuscript, and A. L. Goldberger and J. E. Mietus for providing the heartbeat data. This work was supported by grants from the National Heart, Lung and Blood Institute, National Science Foundation, and Office of Naval Research.

Author information



Corresponding author

Correspondence to Chi-Sang Poon.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Poon, C., Merrill, C. Decrease of cardiac chaos in congestive heart failure. Nature 389, 492–495 (1997).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing