Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Extraction of a hydrophilic compound from water into liquid CO2 using dendritic surfactants

Abstract

Dendrimers are well defined, highly branched polymers1,2,3,4,5 that adopt a roughly spherical, globular shape in solution. Their cores are relatively loosely packed and can trap guest molecules5,6,7, and by appropriate functionalization of the branch tips the macromolecules can act as unimolecular micelle-like entities6. Here we show that dendrimers with a fluorinated shell are soluble in liquid carbon dioxide and can transport CO2-insoluble molecules into this solvent within their cores. Specifically, we demonstrate the extraction of a polar ionic dye, methyl orange, from water into CO2 using these fluorinated dendrimers. This observation suggests possible uses of such macromolecules for the remediation of contaminated water, the extraction of pharmaceutical products from fermentation vessels, the selective encapsulation of drugs for targeted delivery6,7 and the transport of reagents for chemical reactions (such as polymerization8,9,10,11) in liquid and supercritical CO2 solvents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis of the unimolecular dendritic micelle.
Figure 2: iffusion of methyl orange (5) from aqueous solution (upper phase in figure) into a unimolecular dendritic micelle 3 in liquid CO2 (lower phase) at 23.5 °C, 340 atm.
Figure 3: a, Ultraviolet–visible spectra illustrating the diffusion of methyl orange (5) from an aqueous phase into a unimolecular dendritic micelle 3 in liquid CO2 (24.9 °C, 340 atm).
Figure 4: Plot of Kd[dΣ/dΩ(0)]−1 versus concentration (c) for the dendritic micelle 3 in liquid CO2 (23.7C, 340 atm); see text.

Similar content being viewed by others

References

  1. Tomalia, D. A. et al. Anew class of polymers: starburst-dendritic macromolecules. Polym. J. 17, 117–132 (1985).

    Article  CAS  Google Scholar 

  2. Hawker, C. J., Lee, R. & Frechet, J. M. J. One-step synthesis of hyperbranched dendritic polyesters. J. Am. Chem. Soc. 113, 4583–4588 (1991).

    Article  CAS  Google Scholar 

  3. Frechet, J. M. J. Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy. Science 263, 1710–1715 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Knapen, J. W. J. et al. Homogeneous catalysts based on silane dendrimers functionalized with arylnickel(II) complexes. Nature 372, 659–663 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Newkome, G. R., Moorefield, C. N. & Voegtle, F. Dendritic Molecules: Concepts, Syntheses, Perspectives (VCH, Weinheim, (1996)).

    Book  Google Scholar 

  6. Stevelmans, S. et al. Synthesis, characterization and guest-host properties of inverted unimolecular dendritic micelles. J. Am. Chem. Soc. 118, 7398–7399 (1996).

    Article  CAS  Google Scholar 

  7. Hawker, C. J., Wooley, K. L. & Frechet, J. M. J. Unimolecular micelles and globular amphiphiles: dendritic macromolecules as novel recyclable solubilization agents. J. Chem. Soc. Perkin I 1287–1297 (1993).

  8. DeSimone, J. M., Guan, Z. & Eisbernd, C. S. Synthesis of fluoropolymers in supercritical carbon dioxide. Science 257, 945–947 (1992).

    Article  ADS  CAS  Google Scholar 

  9. DeSimone, J. M. et al. Dispersion polymerizations in supercritical carbon dioxide. Science 265, 356–359 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Hsiao, Y.-L., Maury, E. E., DeSimone, J. M., Mawson, S. & Johnston, K. P. Dispersion polymerization of methyl methacrylate stabilized with poly(1,1-dihydroperfluorooctylacrylate) in supercritical carbon dioxide. Macromolecules 28, 8159–8166 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Cooper, A. I. & DeSimone, J. M. Polymer synthesis and characterization in liquid/supercritical carbon dioxide. Curr. Opin. Solid State Mater. Sci. 1, 761–768 (1996).

    Article  ADS  CAS  Google Scholar 

  12. McHugh, M. A. & Krukonis, V. J. Supercritical Fluid Extraction 2nd edn (Butterworth-Heinman, Stoneham, MA, (1994)).

    Google Scholar 

  13. Shaffer, K. A., Jones, T. A., Canelas, D. A. & DeSimone, J. M. Dispersion polymerizations in carbon dioxide using siloxane-based stabilizers. Macromolecules 29, 2704–2706 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Canelas, D. A., Betts, D. E. & DeSimone, J. M. Dispersion polymerization of styrene in supercritical carbon dioxide: importance of effective sufactants. Macromolecules 29, 2818–2821 (1996).

    Article  ADS  CAS  Google Scholar 

  15. McClain, J. B. et al. Design of nonionic surfactants for supercritical carbon dioxide. Science 274, 2049–2052 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Fulton, J. L. et al. Aggregation of amphiphilic molecules in supercritical carbon dioxide: a small angle X-ray scattering study. Langmuir 11, 4241–4249 (1995).

    Article  CAS  Google Scholar 

  17. McClain, J. B. et al. Solution properties of a CO2-soluble fluoropolymer via small angle neutron scattering. J. Am. Chem. Soc. 118, 917–918 (1996).

    Article  CAS  Google Scholar 

  18. de Brabander-van den Berg, E. M. M. & Meijer, E. W. Poly(propylene imine) dendrimers: large-scale synthesis by heterogeneously catalyzed hydrogenations. Angew. Chem. Int. Edn Eng. 32, 1308–1311 (1993).

    Article  Google Scholar 

  19. Jansen, J. F. G. A., de Brabander-van den Berg, E. E. M. & Meijer, E. W. Encapsulation of guest molecules into a dendritic box. Science 266, 1226–1229 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Bosman, A. W., Jansen, J. F. G. A., Janssen, R. A. J. & Meijer, E. W. Charge transfer in the dendritic box. Polym. Mater. Sci. Eng. 73, 340–341 (1995).

    CAS  Google Scholar 

  21. Jansen, J. F. G. A., Meijer, E. W. & de Brabander-van den Berg, E. M. M. The dendritic box: shape-selective liberation of encapsulated guests. J. Am. Chem. Soc. 117, 4417–4418 (1995).

    Article  CAS  Google Scholar 

  22. Maury, E. E. et al. Graft copolymer surfactants for supercritical carbon dioxide applications. Polym. Prepr. (ACS Div. Polym. Chem.) 34, 664–665 (1993).

    CAS  Google Scholar 

  23. McFann, G. J., Johnston, K. P. & Howdle, S. M. Solubilization in nonionic reverse micelles in carbon dioxide. Am. Inst. Chem. Eng. J. 40, 543–555 (1994).

    Article  CAS  Google Scholar 

  24. Johnston, K. P. et al. Water-in carbon dioxide microemulsions: an environment for hydrophiles including proteins. Science 271, 624–626 (1996).

    Article  ADS  CAS  Google Scholar 

  25. Reichhardt, C. Empirical parameters of solvent polarity as linear free-energy relationships. Angew. Chem. Int. Edn Engl. 18, 98–110 (1979).

    Article  Google Scholar 

  26. Zacharlasee, K. A., Phuc, N. V. & Kozanklewicz, B. Investigation of micelles, microemulsions, and phospolipid bilayers with the pyridinium n-phenolbetaine Et(30), a polarity probe for aqueous interfaces. J. Phys. Chem. 85, 2676–2683 (1981).

    Article  Google Scholar 

  27. Wignall, G. D. et al. Reduction of parasitic scattering in SAXS by a three-pinhole collimating system J.Appl. Crystallogr. 23, 241–246 (1990).

    Article  Google Scholar 

  28. Pfund, D. M., Zemanian, T. S., Linehan, J. C., Fulton, J. L. & Yonker, C. R. Fluid structure in supercritical xenon by nuclear magnetic resonance spectroscopy and small angle X-ray scattering. J.Phys. Chem. 98, 11846–11857 (1994).

    Article  CAS  Google Scholar 

  29. Russell, T. P., Lin, J. S., Spooner, S. & Wignall, G. D. Intercalibration of small angle X-ray and neutron scattering data. J. Appl. Crystallogr. 21, 629–638 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.I.C. thanks the Royal Commission for The Exhibition of 1851 for a research fellowship (1995–96); J.D.L. thanks the NSF for support through the University of Tennessee. We also acknowledge support from the NSF for a Presidential Faculty Fellowship (J.M.D., 1993–97) as well as from the Consortium on Synthesis and Processing of Polymeric Materials in CO2, which is sponsored by the NSF, the Environmental Protection Agency, DuPont, Hoechst-Celanese, Air Products and Chemicals, B. F. Groodrich, Eastman Chemical, Bayer and Xerox. We also thank the Division of Material Sciences, US Department of Energy under contract with Lockheed-Martin Research Corporation, and the Exxon Education Fundation for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. DeSimone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooper, A., Londono, J., Wignall, G. et al. Extraction of a hydrophilic compound from water into liquid CO2 using dendritic surfactants. Nature 389, 368–371 (1997). https://doi.org/10.1038/38706

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/38706

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing