Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The histone deacetylase RPD3 counteracts genomic silencing in Drosophila and yeast

Abstract

BOTH position-effect variegation (PEV)1,2 in Drosophila and telomeric position-effect in yeast (TPE)3–5 result from the mosaic inactivation of genes relocated next to a block of centromeric heterochromatin or next to telomeres. In many aspects, these phenomena are analogous to other epigenetic silencing mechan-isms, such as the control of homeotic gene clusters6, X-chromo-some inactivation7 and imprinting in mammals8, and mating-type control in yeast5. Dominant mutations that suppress or enhance PEV are thought to encode either chromatin proteins or factors that directly affect chromatin structure1. We have identified an insertional mutation in Drosophila that enhances PEV and reduces transcription of the gene in the eye–antenna imaginal disc. The gene corresponds to that encoding the transcriptional regulator RPD3 in yeast9,10, and to a human histone deacetylase11. In yeast, RRD3-deletion strains show enhanced TPE, suggesting a conserved role of the histone deacetylase RPD3 in counteracting genomic silencing. This function of RPD3, which is in contrast to the general correlation between histone acetylation and increased transcription, might be due to a specialized chromatin structure at silenced loci.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Reuter, G. & Spierer, P. BioEssays 14, 605–612 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Karpen, G. H. Curr. Opin. Genet. Dev 4, 281–291 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Gottschling, D. E., Aparicio, O. M., Billington, B. L. & Zakian, V. A. Cell 63, 751–762 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Aparicio, O. M., Billington, B. L. & Gottschling, D. E. Cell 66, 1279–1287 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Laurenson, P. & Rine, J. Microbiol. Rev. 56, 543–560 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Paro, R. Curr. Opin. Cell Biol. 5, 999–1005 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Gartler, S. M. & Riggs, A. D. Annu. Rev. Genet. 17, 155–190 (1983).

    Article  CAS  PubMed  Google Scholar 

  8. Solter, D. Annu. Rev. Genet. 22, 127–146 (1988).

    Article  CAS  PubMed  Google Scholar 

  9. Vidal, M. & Gaber, R. F. Mol. Cell. Biol. 11, 12 6317–6327 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. McKenzie, E. A. et al. Mol. Gen. Genet. 240, 374–386 (1993).

    CAS  PubMed  Google Scholar 

  11. Taunton, J., Hassig, C. A. & Schreiber, S. L. Science 272, 408–411 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Brown, N. H. & Kafatos, F. C. J. Mol. Biol. 203, 425–437 (1988).

    Article  CAS  PubMed  Google Scholar 

  13. Renauld, H. et al. Genes. Dev. 7, 1133–1145 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Turner, B. M. J. Cell Sci. 99, 13–20 (1990).

    Google Scholar 

  15. Wolffe, A. P. & Pruss, D. Cell 84, 817–819 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Brownell, J. E. & Allis, C. D. Curr. Opin. Genet. Dev. 6, 176–184 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Braunstein, M., Rose, A. B., Holmes, S. G., Allis, C. D. & Broach, J. R. Genes Dev. 7, 592–604 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Turner, B. M., Birley, A. J. & Lavender, J. Cell 69, 375–384 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Jeppesen, P. & Turner, B. M. Cell 74, 281–289 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Brownell, J. E. et al. Cell 84, 843–851 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Sussel, L., Vannier, D. & Shore, D. Genetics 141, 873–888 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Braunstein, M., Sobel, R. E., Allis, C. D., Turner, B. M. & Broach, J. R. Mol. Cell. Biol. 16, 4349–4356 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rundlett, S. E. et al. Proc. Natl Acad. Sci. USA 93, 13723–13728 (1996).

    Article  Google Scholar 

  24. Sobel, R. E., Cook, R. G., Perry, C. A., Annunziato, A. T. & Allis, C. D. Proc. Natl Acad. Sci. USA 92, 1237–1241 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Masucci, J. D., Miltenberger, R. J. & Hoffmann, F. M. Genes Dev. 4, 2011–2023 (1990).

    Article  CAS  PubMed  Google Scholar 

  26. Seum, C. et al. Development 122, 1949–1956 (1996).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubertis, F., Kadosh, D., Henchoz, S. et al. The histone deacetylase RPD3 counteracts genomic silencing in Drosophila and yeast. Nature 384, 589–591 (1996). https://doi.org/10.1038/384589a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/384589a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing