Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct radiative forcing by anthropogenic airborne mineral aerosols

Abstract

AIRBORNE mineral dust can have a significant effect on the Earth's radiation budget, as it can both scatter sunlight back to space (leading to negative radiative forcing), and absorb solar and infrared radiation (leading to positive forcing)1,2. The effects of mineral aerosols on the radiation budget are important relative to those of other types of aerosols—such as sulphate and smoke particles—due to the widespread distribution and large optical depth of mineral dust. Various human activities, such as land use practices, can result in additional loading of dust, increasing the radiative forcing. Previous studies have attempted to estimate the radiative effects of both the natural and anthropogenic components of the dust3,4. Here we use estimates of anthropogenic dust inputs and observations of dust optical properties to show that although the key quantities contributing to the evaluation of the direct solar radiative forcing by dust generated through human activities have a wide range of uncertainty, the forcing by anthropogenically generated mineral aerosols may be comparable to the forcing by other anthropogenic aerosols. On a regional scale the forcing due to mineral aerosols can greatly exceed that due to sulphate aerosols and can be comparable to that of clouds. Our analysis enables us to highlight the key quantities that need to be better characterized to reduce the (currently large) uncertainties in these estimates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Houghton, J. T. et al. (eds) Climate Change 1994: Radiative Forcing of Climate and an Evaluation of the IPCCI S92 Emission Scenarios (Cambridge Univ. Press, 1994).

  2. Andreae, M. O. in World Survey of Climatology Vol. 16, Future Climates of the World (ed. Henderson-Sellers, A.) (Elsevier, Amsterdam, 1995).

    Google Scholar 

  3. Tegen, I. & Fung, I. J. geophys. Res. 100, 18707–18722 (1995).

    Article  ADS  Google Scholar 

  4. Tegen, I., Lacis, A. A. & Fung, I. Nature 380, 419–422 (1996).

    Article  ADS  CAS  Google Scholar 

  5. Charlson, R. J. et al. Tellus 43AB, 152–158 (1991).

    ADS  Google Scholar 

  6. Charlson, R. J. et al. Science 255, 423–430 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Penner, J. E., Dickinson, R. E. & O'Neill, C. A. Science 256, 1432–1433 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Chylek, P. & Wong, J. G. D. Geophys. Res. Lett. 22, 929–931 (1995).

    Article  ADS  Google Scholar 

  9. Li, X., Maring, H., Savoie, D., Voss, K. & Prospero, J. M. Nature 380, 416–418 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Fouquart, Y., Bonnel, B., Chaoui Roquai, M. & Santer, R. J. Clim. appl. Met. 26, 28–52 (1987).

    Article  Google Scholar 

  11. Carlson, T. N. & Benjamin, S. J. atmos. Sci. 37, 193–213 (1980).

    Article  ADS  Google Scholar 

  12. D'Almeida, G. J. geophys. Res. 92, 3017–3026 (1987).

    Article  ADS  Google Scholar 

  13. WMO Report of the Experts Meeting on Aerosols and their Climatic Effects (Rep. WCP-55, World Climate Program, Geneva, 1983).

  14. Sokolik, I. N. & Golitsyn, G. S. Atmos. Envir. 27A, 2509–2517 (1993).

    Article  ADS  CAS  Google Scholar 

  15. Ackerman, S. A. & Cox, S. K. J. geophys. Res. 87, 8991–9002 (1982).

    Article  ADS  Google Scholar 

  16. Sagan, C., Toon, O. B. & Pollack, J. B. Science 206, 1356–1368 (1979).

    Article  ADS  Google Scholar 

  17. United Nations Environment Programme World Atlas of Desertification (Edward Arnold, London, 1992).

  18. Goudie, A. S. Prog. phys. Geogr. 7, 502–530 (1983).

    Article  Google Scholar 

  19. Schutz, L. Ann. N.Y. Acad. Sci. 338, 515–532 (1980).

    Article  ADS  Google Scholar 

  20. Duce, R. A. in Aerosol Forcing of Climate (eds Charlson, R. J. & Heintzenberg, J.) 43–72 (Wiley, New York, 1995).

    Google Scholar 

  21. Andronova, A. V. et al. lzv. Atmos. Oceanic Phys. 25, 29–36 (1989).

    Google Scholar 

  22. Penner, J. E. et al. Bull. Am. met. Soc. 75, 375–400 (1994).

    Article  Google Scholar 

  23. Ackerman, S. A. & Chung, H. J. appl. Met. 31, 223–241 (1992).

    Article  Google Scholar 

  24. Kiehl, J. T. & Rodhe, H. in Aerosol Forcing of Climate (eds Charlson, R. J. & Heintzenberg, J.) 281–296 (Wiley, New York, 1995).

    Google Scholar 

  25. Harrison, E. F. et al. J. geophys. Res. 95, 18687–18698 (1990).

    Article  ADS  Google Scholar 

  26. Prospero, J. M., Uematsu, M. & Savoe, D. L. in Chemical Oceanography (eds Riley, J. P., Chester, R. & Duce, R. A.) 188–218 (Academic, London, 1989).

    Google Scholar 

  27. Westphal, D. L., Toon, O. B. & Carlson, T. N. J. atmos. Sci. 45, 2145–2166 (1988).

    Article  ADS  Google Scholar 

  28. Tegen, I. & Fung, I. J. geophys. Res. 99, 22897–22914 (1994).

    Article  ADS  Google Scholar 

  29. Sokolik, I. N., Andronova, A. V. & Johnson, T. C. Atmos. Envir. 27A, 2495–2502 (1993).

    Article  ADS  CAS  Google Scholar 

  30. Atmospheric Turbudity and Precipitation Chemistry Data (WMO, US Dept of Commerce and NOAA, Asheville, NC, 1972–75)

  31. Ben Mohamed, A. et al. J. appl. Met. 31, 1286–1293 (1992).

    Article  Google Scholar 

  32. Panchenko, M. V. et al. Atmos. Envir. 27A, 2503–2511 (1993).

    Article  ADS  Google Scholar 

  33. Kondratiev, K. Ya. & Zhvalev, V. F. The First GARP Global Experiment: Aerosol and Climate (in Russian) (Hydrometeoizdat, Leningrad, 1981).

    Google Scholar 

  34. Stowe, L. L. in Proc. AGU Spring Meeting May 23–27, Baltimore, Maryland (Am. Geophys. Union, 1994).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokolik, I., Toon, O. Direct radiative forcing by anthropogenic airborne mineral aerosols. Nature 381, 681–683 (1996). https://doi.org/10.1038/381681a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/381681a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing