Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mineral dust aerosol impacts on global climate and climate change

Abstract

Mineral dust aerosols impact the energy budget of Earth through interactions with radiation, clouds, atmospheric chemistry, the cryosphere and biogeochemistry. In this Review, we summarize these interactions and assess the resulting impacts of dust, and of changes in dust, on global climate and climate change. The total effect of dust interactions on the global energy budget of Earth — the dust effective radiative effect — is −0.2 ± 0.5 W m2 (90% confidence interval), suggesting that dust net cools the climate. Global dust mass loading has increased 55 ± 30% since pre-industrial times, driven largely by increases in dust from Asia and North Africa, leading to changes in the energy budget of Earth. Indeed, this increase in dust has produced a global mean effective radiative forcing of −0.07 ± 0.18 W m2, somewhat counteracting greenhouse warming. Current climate models and climate assessments do not represent the historical increase in dust and thus omit the resulting radiative forcing, biasing climate change projections and assessments of climate sensitivity. Climate model simulations of future changes in dust diverge widely and are very uncertain. Further work is thus needed to constrain the radiative effects of dust on climate and to improve the representation of dust in climate models.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sources and sinks of dust in the global dust cycle.
Fig. 2: Mechanisms through which dust impacts climate.
Fig. 3: Global mean radiative effects and forcing of dust at the top of atmosphere.
Fig. 4: Atmospheric dust mass loading changes since pre-industrial times.
Fig. 5: Climate model representations of historical changes in dust loading.

Similar content being viewed by others

Data availability

The data for the dust reconstruction in Figs 4 and 5 are available at https://doi.org/10.15144/S4VC7X.

References

  1. Shao, Y. P. Physics and Modelling of Wind Erosion 2nd edn (Springer, 2008).

  2. Kok, J. F., Parteli, E. J. R., Michaels, T. I. & Karam, D. B. The physics of wind-blown sand and dust. Rep. Prog. Phys. 75, 106901 (2012).

    Article  Google Scholar 

  3. Gillette, D. A. On the production of soil wind erosion having the potential for long range transport. J. Rech. Atmos. 8, 734–744 (1974).

    Google Scholar 

  4. Kok, J. F. A scaling theory for the size distribution of emitted dust aerosols suggests climate models underestimate the size of the global dust cycle. Proc. Natl Acad. Sci. USA 108, 1016–1021 (2011).

    Article  Google Scholar 

  5. Ryder, C. L. et al. Coarse and giant particles are ubiquitous in Saharan dust export regions and are radiatively significant over the Sahara. Atmos. Chem. Phys. 19, 15353–15376 (2019).

    Article  Google Scholar 

  6. Weinzierl, B. et al. The Saharan Aerosol Long-range Transport and Aerosol–Cloud Interaction Experiment (SALTRACE): overview and selected highlights. Bull. Am. Meteorol. Soc. 98, 1427–1451 (2017).

    Article  Google Scholar 

  7. Kok, J. F. et al. Smaller desert dust cooling effect estimated from analysis of dust size and abundance. Nat. Geosci. 10, 274–278 (2017). This article showed that atmospheric dust is coarser than represented in climate models, causing the dust direct radiative effect to be less cooling than thought.

    Article  Google Scholar 

  8. Gliss, J. et al. AeroCom phase III multi-model evaluation of the aerosol life cycle and optical properties using ground- and space-based remote sensing as well as surface in situ observations. Atmos. Chem. Phys. 21, 87–128 (2021).

    Article  Google Scholar 

  9. Kok, J. F. et al. Contribution of the world’s main dust source regions to the global cycle of desert dust. Atmos. Chem. Phys. 21, 8169–8193 (2021).

    Article  Google Scholar 

  10. Bullard, J. E. et al. High-latitude dust in the Earth system. Rev. Geophys. 54, 447–485 (2016).

    Article  Google Scholar 

  11. Prospero, J. M., Delany, A. C. & Carlson, T. N. The discovery of African dust transport to the Western Hemisphere and the Saharan air layer. Bull. Am. Meteorol. Soc. 102, E1239–E1260 (2021).

    Article  Google Scholar 

  12. Highwood, E. J. & Ryder, C. L. in Mineral Dust: A Key Player in the Earth System (eds Peter, K. & Jan-Berend, W. S.) 327–357 (Springer Netherlands, 2014).

  13. Storelvmo, T. Aerosol effects on climate via mixed-phase and ice clouds. Annu. Rev. Earth Planet. Sci. 45, 199–222 (2017).

    Article  Google Scholar 

  14. Karydis, V. A. et al. Global impact of mineral dust on cloud droplet number concentration. Atmos. Chem. Phys. 17, 5601–5621 (2017). This article investigates the different mechanisms by which dust particles affect warm clouds, finding that dust increases cloud droplet number concentrations over deserts but decreases it over polluted regions.

    Article  Google Scholar 

  15. Klingmuller, K., Karydis, V. A., Bacer, S., Stenchikov, G. L. & Lelieveld, J. Weaker cooling by aerosols due to dust–pollution interactions. Atmos. Chem. Phys. 20, 15285–15295 (2020).

    Article  Google Scholar 

  16. Klingmuller, K., Lelieveld, J., Karydis, V. A. & Stenchikov, G. L. Direct radiative effect of dust–pollution interactions. Atmos. Chem. Phys. 19, 7397–7408 (2019). This article uses a chemistry–climate model to shed light on the climatic effects of the interactions between dust and anthropogenic air pollution.

    Article  Google Scholar 

  17. Bauer, S. E. et al. Do sulfate and nitrate coatings on mineral dust have important effects on radiative properties and climate modeling? J. Geophys. Res. Atmos. https://doi.org/10.1029/2005jd006977 (2007). This article provides a first attempt to evaluate the effects of dust coating by sulfate and nitrate on the aerosol direct radiative effect.

    Article  Google Scholar 

  18. Usher, C. R., Michel, A. E. & Grassian, V. H. Reactions on mineral dust. Chem. Rev. 103, 4883–4939 (2003). This article provides a comprehensive review of heterogeneous reactions of atmospheric trace gases on mineral dust surface in the troposphere.

    Article  Google Scholar 

  19. Skiles, S. M., Flanner, M., Cook, J. M., Dumont, M. & Painter, T. H. Radiative forcing by light-absorbing particles in snow. Nat. Clim. Change 8, 965 (2018). This article reviews and summarizes the global radiative forcing by dust on snow and ice constrained by observations.

    Article  Google Scholar 

  20. Tuccella, P., Pitari, G., Colaiuda, V., Raparelli, E. & Curci, G. Present-day radiative effect from radiation-absorbing aerosols in snow. Atmos. Chem. Phys. 21, 6875–6893 (2021). This article provides an observationally constrained estimate of the global mean dust-snow radiative effect with a comprehensive uncertainty analysis.

    Article  Google Scholar 

  21. Mahowald, N. Aerosol indirect effect on biogeochemical cycles and climate. Science 334, 794–796 (2011).

    Article  Google Scholar 

  22. McGraw, Z., Storelvmo, T., David, R. O. & Sagoo, N. Global radiative impacts of mineral dust perturbations through stratiform clouds. J. Geophys. Res. Atmos. https://doi.org/10.1029/2019jd031807 (2020). This global modelling study of the various dust radiative effects on clouds finds that many of the interactions produce counteracting radiative effects.

    Article  Google Scholar 

  23. Mahowald, N. M. et al. Observed 20th century desert dust variability: impact on climate and biogeochemistry. Atmos. Chem. Phys. 10, 10875–10893 (2010).

    Article  Google Scholar 

  24. Hooper, J. & Marx, S. A global doubling of dust emissions during the Anthropocene. Glob. Planet. Change 169, 70–91 (2018). This article compiles sedimentary records that recorded dust deposition from pre-industrial times onwards, many of which show approximately a doubling of dust deposition.

    Article  Google Scholar 

  25. Boucher, O. & Tanre, D. Estimation of the aerosol perturbation to the Earth’s radiative budget over oceans using POLDER satellite aerosol retrievals. Geophys. Res. Lett. 27, 1103–1106 (2000).

    Article  Google Scholar 

  26. Boucher, O. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) 571–658 (Cambridge Univ. Press, 2013).

  27. Forster, P. et al. in Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

  28. Ryder, C. L. et al. Optical properties of Saharan dust aerosol and contribution from the coarse mode as measured during the Fennec 2011 aircraft campaign. Atmos. Chem. Phys. 13, 303–325 (2013).

    Article  Google Scholar 

  29. Tegen, I. & Lacis, A. A. Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol. J. Geophys. Res. Atmos. 101, 19237–19244 (1996).

    Article  Google Scholar 

  30. Sokolik, I. N. & Toon, O. B. Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths. J. Geophys. Res. Atmos. 104, 9423–9444 (1999).

    Article  Google Scholar 

  31. Di Biagio, C., Balkanski, Y., Albani, S., Boucher, O. & Formenti, P. Direct radiative effect by mineral dust aerosols constrained by new microphysical and spectral optical data. Geophys. Res. Lett. https://doi.org/10.1029/2019gl086186 (2020).

    Article  Google Scholar 

  32. Dufresne, J. L., Gautier, C., Ricchiazzi, P. & Fouquart, Y. Longwave scattering effects of mineral aerosols. J. Atmos. Sci. 59, 1959–1966 (2002). This article showed that longwave scattering by dust produces a substantial radiative effect that is neglected by climate models.

    Article  Google Scholar 

  33. Adebiyi, A. A. et al. A review of coarse mineral dust in the Earth system. Preprint at EarthArXiv https://doi.org/10.31223/X5QD36 (2022).

    Article  Google Scholar 

  34. Di Biagio, C. et al. Complex refractive indices and single-scattering albedo of global dust aerosols in the shortwave spectrum and relationship to size and iron content. Atmos. Chem. Phys. 19, 15503–15531 (2019). This article used laboratory experiments to obtain the shortwave optical properties of aerosols generated from desert soil samples across the world, finding that dust in climate models might be too absorbing.

    Article  Google Scholar 

  35. Riemer, N., Ault, A. P., West, M., Craig, R. L. & Curtis, J. H. Aerosol mixing state: measurements, modeling, and impacts. Rev. Geophys. 57, 187–249 (2019).

    Article  Google Scholar 

  36. Renard, J. B. et al. In situ measurements of desert dust particles above the western Mediterranean Sea with the balloon-borne Light Optical Aerosol Counter/sizer (LOAC) during the ChArMEx campaign of summer 2013. Atmos. Chem. Phys. 18, 3677–3699 (2018).

    Article  Google Scholar 

  37. Denjean, C. et al. Size distribution and optical properties of African mineral dust after intercontinental transport. J. Geophys. Res. Atmos. 121, 7117–7138 (2016).

    Article  Google Scholar 

  38. Seinfeld, J. H. et al. ACE-ASIA — regional climatic and atmospheric chemical effects of Asian dust and pollution. Bull. Am. Meteorol. Soc. 85, 367–380 (2004).

    Article  Google Scholar 

  39. Liao, H. & Seinfeld, J. H. Radiative forcing by mineral dust aerosols: sensitivity to key variables. J. Geophys. Res. Atmos. 103, 31637–31645 (1998).

    Article  Google Scholar 

  40. Liou, K. N. An Introduction to Atmospheric Radiation. 2nd edn (Academic Press, 2002).

  41. Claquin, T., Schulz, M., Balkanski, Y. & Boucher, O. Uncertainties in assessing radiative forcing by mineral dust. Tellus Ser. B Chem. Phys. Meteorol. 50, 491–505 (1998).

    Article  Google Scholar 

  42. Kok, J. F. et al. Improved representation of the global dust cycle using observational constraints on dust properties and abundance. Atmos. Chem. Phys. 21, 8127–8167 (2021).

    Article  Google Scholar 

  43. Di Biagio, C. et al. Global scale variability of the mineral dust long-wave refractive index: a new dataset of in situ measurements for climate modeling and remote sensing. Atmos. Chem. Phys. 17, 1901–1929 (2017).

    Article  Google Scholar 

  44. Li, L. L. et al. Quantifying the range of the dust direct radiative effect due to source mineralogy uncertainty. Atmos. Chem. Phys. 21, 3973–4005 (2021).

    Article  Google Scholar 

  45. Sicard, M., Bertolin, S., Mallet, M., Dubuisson, P. & Comeron, A. Estimation of mineral dust long-wave radiative forcing: sensitivity study to particle properties and application to real cases in the region of Barcelona. Atmos. Chem. Phys. 14, 9213–9231 (2014).

    Article  Google Scholar 

  46. Brindley, H. E. & Russell, J. E. An assessment of Saharan dust loading and the corresponding cloud-free longwave direct radiative effect from geostationary satellite observations. J. Geophys. Res. Atmos. https://doi.org/10.1029/2008jd011635 (2009).

    Article  Google Scholar 

  47. Adebiyi, A. A. & Kok, J. F. Climate models miss most of the coarse dust in the atmosphere. Sci. Adv. 6, eaaz9507 (2020).

    Article  Google Scholar 

  48. Tuccella, P., Curci, G., Pitari, G., Lee, S. & Jo, D. S. Direct radiative effect of absorbing aerosols: sensitivity to mixing state, brown carbon, and soil dust refractive index and shape. J. Geophys. Res. Atmos. https://doi.org/10.1029/2019jd030967 (2020).

    Article  Google Scholar 

  49. Albani, S. et al. Improved dust representation in the Community Atmosphere Model. J. Adv. Model. Earth Syst. 6, 541–570 (2014).

    Article  Google Scholar 

  50. Ito, A., Adebiyi, A. A., Huang, Y. & Kok, J. F. Less atmospheric radiative heating by dust due to the synergy of coarser size and aspherical shape. Atmos. Chem. Phys. 21, 16869–16891 (2021).

    Article  Google Scholar 

  51. Colarco, P. R. et al. Impact of radiatively interactive dust aerosols in the NASA GEOS-5 climate model: sensitivity to dust particle shape and refractive index. J. Geophys. Res. Atmos. 119, 753–786 (2014).

    Article  Google Scholar 

  52. Ryder, C. L. et al. Coarse-mode mineral dust size distributions, composition and optical properties from AER-D aircraft measurements over the tropical eastern Atlantic. Atmos. Chem. Phys. 18, 17225–17257 (2018).

    Article  Google Scholar 

  53. Ansmann, A. et al. Profiling of Saharan dust from the Caribbean to West Africa, Part 2: shipborne lidar measurements versus forecasts. Atmos. Chem. Phys. Discuss. https://doi.org/10.5194/acp-2017-502 (2017).

    Article  Google Scholar 

  54. Song, Q. et al. Toward an observation-based estimate of dust net radiative effects in tropical north atlantic through integrating satellite observations and in situ measurements of dust properties. Atmos. Chem. Phys. https://doi.org/10.5194/acp-2018-267 (2018).

    Article  Google Scholar 

  55. O’Sullivan, D. et al. Models transport Saharan dust too low in the atmosphere: a comparison of the MetUM and CAMS forecasts with observations. Atmos. Chem. Phys. 20, 12955–12982 (2020).

    Article  Google Scholar 

  56. Kim, D. et al. Sources, sinks, and transatlantic transport of North African dust aerosol: a multimodel analysis and comparison with remote sensing data. J. Geophys. Res. Atmos. 119, 6259–6277 (2014).

    Article  Google Scholar 

  57. Begue, N. et al. Aerosol processing and CCN formation of an intense Saharan dust plume during the EUCAARI 2008 campaign. Atmos. Chem. Phys. 15, 3497–3516 (2015).

    Article  Google Scholar 

  58. Formenti, P., Elbert, W., Maenhaut, W., Haywood, J. & Andreae, M. O. Chemical composition of mineral dust aerosol during the Saharan Dust Experiment (SHADE) airborne campaign in the Cape Verde region, September 2000. J. Geophys. Res. Atmos. https://doi.org/10.1029/2002jd002648 (2003).

    Article  Google Scholar 

  59. Karydis, V. A., Tsimpidi, A. P., Pozzer, A., Astitha, M. & Lelieveld, J. Effects of mineral dust on global atmospheric nitrate concentrations. Atmos. Chem. Phys. 16, 1491–1509 (2016).

    Article  Google Scholar 

  60. Sullivan, R. C., Guazzotti, S. A., Sodeman, D. A. & Prather, K. A. Direct observations of the atmospheric processing of Asian mineral dust. Atmos. Chem. Phys. 7, 1213–1236 (2007).

    Article  Google Scholar 

  61. Huang, X. et al. Pathways of sulfate enhancement by natural and anthropogenic mineral aerosols in China. J. Geophys. Res. Atmos. 119, 14165–14179 (2014).

    Article  Google Scholar 

  62. Sullivan, R. C. et al. Mineral dust is a sink for chlorine in the marine boundary layer. Atmos. Environ. 41, 7166–7179 (2007).

    Article  Google Scholar 

  63. Feng, T. et al. Summertime ozone formation in Xi’an and surrounding areas, China. Atmos. Chem. Phys. 16, 4323–4342 (2016).

    Article  Google Scholar 

  64. Gharibzadeh, M., Bidokhti, A. A. & Alam, K. The interaction of ozone and aerosol in a semi-arid region in the Middle East: ozone formation and radiative forcing implications. Atmos. Environ. https://doi.org/10.1016/j.atmosenv.2020.118015 (2021).

    Article  Google Scholar 

  65. Usher, C. R., Al-Hosney, H., Carlos-Cuellar, S. & Grassian, V. H. A laboratory study of the heterogeneous uptake and oxidation of sulfur dioxide on mineral dust particles. J. Geophys. Res. Atmos. https://doi.org/10.1029/2002jd002051 (2002).

    Article  Google Scholar 

  66. Goodman, A. L., Underwood, G. M. & Grassian, V. H. Heterogeneous reaction of NO2: characterization of gas-phase and adsorbed products from the reaction, 2NO2(g)+H2O(a) → HONO(g)+HNO3(a) on hydrated silica particles. J. Phys. Chem. A 103, 7217–7223 (1999).

    Article  Google Scholar 

  67. Nenes, A., Pandis, S. N., Weber, R. J. & Russell, A. Aerosol pH and liquid water content determine when particulate matter is sensitive to ammonia and nitrate availability. Atmos. Chem. Phys. 20, 3249–3258 (2020).

    Article  Google Scholar 

  68. Karydis, V. A., Tsimpidi, A. P., Pozzer, A. & Lelieveld, J. How alkaline compounds control atmospheric aerosol particle acidity. Atmos. Chem. Phys. 21, 14983–15001 (2021).

    Article  Google Scholar 

  69. Trochkine, D. et al. Mineral aerosol particles collected in Dunhuang, China, and their comparison with chemically modified particles collected over Japan. J. Geophys. Res. Atmos. https://doi.org/10.1029/2002jd003268 (2003).

    Article  Google Scholar 

  70. Fitzgerald, E., Ault, A. P., Zauscher, M. D., Mayol-Bracero, O. L. & Prather, K. A. Comparison of the mixing state of long-range transported Asian and African mineral dust. Atmos. Environ. 115, 19–25 (2015).

    Article  Google Scholar 

  71. Klingmuller, K. et al. Revised mineral dust emissions in the atmospheric chemistry-climate model EMAC (MESSy 2.52 DU_Astitha1 KKDU2017 patch). Geosci. Model. Dev. 11, 989–1008 (2018).

    Article  Google Scholar 

  72. Perlwitz, J. P., Perez Garcia-Pando, C. & Miller, R. L. Predicting the mineral composition of dust aerosols — part 1: representing key processes. Atmos. Chem. Phys. 15, 11593–11627 (2015).

    Article  Google Scholar 

  73. Sullivan, R. C. et al. Effect of chemical mixing state on the hygroscopicity and cloud nucleation properties of calcium mineral dust particles. Atmos. Chem. Phys. 9, 3303–3316 (2009).

    Article  Google Scholar 

  74. Cziczo, D. J. et al. Deactivation of ice nuclei due to atmospherically relevant surface coatings. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/4/4/044013 (2009).

    Article  Google Scholar 

  75. Fan, S. M., Horowitz, L. W., Levy, H. & Moxim, W. J. Impact of air pollution on wet deposition of mineral dust aerosols. Geophys. Res. Lett. https://doi.org/10.1029/2003gl018501 (2004).

    Article  Google Scholar 

  76. Liao, H., Seinfeld, J. H., Adams, P. J. & Mickley, L. J. Global radiative forcing of coupled tropospheric ozone and aerosols in a unified general circulation model. J. Geophys. Res. Atmos. 109, D16207 (2004).

    Article  Google Scholar 

  77. Bauer, S. E. & Koch, D. Impact of heterogeneous sulfate formation at mineral dust surfaces on aerosol loads and radiative forcing in the Goddard Institute for Space Studies general circulation model. J. Geophys. Res. Atmos. https://doi.org/10.1029/2005jd005870 (2005).

    Article  Google Scholar 

  78. Koehler, K. A. et al. Hygroscopicity and cloud droplet activation of mineral dust aerosol. Geophys. Res. Lett. https://doi.org/10.1029/2009gl037348 (2009).

    Article  Google Scholar 

  79. Kumar, P., Sokolik, I. N. & Nenes, A. Measurements of cloud condensation nuclei activity and droplet activation kinetics of fresh unprocessed regional dust samples and minerals. Atmos. Chem. Phys. 11, 3527–3541 (2011).

    Article  Google Scholar 

  80. Gaston, C. J. Re-examining dust chemical aging and its impacts on earth’s climate. Acc. Chem. Res. 53, 1005–1013 (2020).

    Article  Google Scholar 

  81. Karydis, V. A., Kumar, P., Barahona, D., Sokolik, I. N. & Nenes, A. On the effect of dust particles on global cloud condensation nuclei and cloud droplet number. J. Geophys. Res. Atmos. https://doi.org/10.1029/2011jd016283 (2011).

    Article  Google Scholar 

  82. Sagoo, N. & Storelvmo, T. Testing the sensitivity of past climates to the indirect effects of dust. Geophys. Res. Lett. 44, 5807–5817 (2017).

    Article  Google Scholar 

  83. Li, R., Min, Q. L. & Harrison, L. C. A case study: the indirect aerosol effects of mineral dust on warm clouds. J. Atmos. Sci. 67, 805–816 (2010).

    Article  Google Scholar 

  84. Hoose, C. & Mohler, O. Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments. Atmos. Chem. Phys. 12, 9817–9854 (2012).

    Article  Google Scholar 

  85. Kanji, Z. A. et al. Overview of ice nucleating particles. Meteorol. Monogr. https://doi.org/10.1175/amsmonographs-d-16-0006.1 (2017).

    Article  Google Scholar 

  86. Matus, A. V. & L’Ecuyer, T. S. The role of cloud phase in Earth’s radiation budget. J. Geophys. Res. Atmos. 122, 2559–2578 (2017).

    Article  Google Scholar 

  87. Morrison, H. et al. Resilience of persistent Arctic mixed-phase clouds. Nat. Geosci. 5, 11–17 (2012).

    Article  Google Scholar 

  88. Shi, Y. & Liu, X. H. Dust radiative effects on climate by glaciating mixed-phase clouds. Geophys. Res. Lett. 46, 6128–6137 (2019). This global modelling study finds that dust-induced glaciation of mixed-phase clouds produces net warming globally but cooling in the Arctic.

    Article  Google Scholar 

  89. Choi, Y. S., Lindzen, R. S., Ho, C. H. & Kim, J. Space observations of cold-cloud phase change. Proc. Natl Acad. Sci. USA 107, 11211–11216 (2010).

    Article  Google Scholar 

  90. Tan, I., Storelvmo, T. & Choi, Y. S. Spaceborne lidar observations of the ice-nucleating potential of dust, polluted dust, and smoke aerosols in mixed-phase clouds. J. Geophys. Res. Atmos. 119, 6653–6665 (2014).

    Article  Google Scholar 

  91. Froyd, K. D. et al. Dominant role of mineral dust in cirrus cloud formation revealed by global-scale measurements. Nat. Geosci. 15, 177 (2022). This article combined observations and modelling to demonstrate the importance of dust for nucleating cirrus clouds.

    Article  Google Scholar 

  92. Cziczo, D. J. et al. Clarifying the dominant sources and mechanisms of cirrus cloud formation. Science 340, 1320–1324 (2013).

    Article  Google Scholar 

  93. David, R. O. et al. Pore condensation and freezing is responsible for ice formation below water saturation for porous particles. Proc. Natl Acad. Sci. USA 116, 8184–8189 (2019).

    Article  Google Scholar 

  94. Heymsfield, A. J. et al. Cirrus clouds. Meteorol. Monogr. https://doi.org/10.1175/amsmonographs-d-16-0010.1 (2017).

    Article  Google Scholar 

  95. Storelvmo, T. & Herger, N. Cirrus cloud susceptibility to the injection of ice nuclei in the upper troposphere. J. Geophys. Res. Atmos. 119, 2375–2389 (2014).

    Article  Google Scholar 

  96. Ullrich, R. et al. A new ice nucleation active site parameterization for desert dust and soot. J. Atmos. Sci. 74, 699–717 (2017).

    Article  Google Scholar 

  97. Liu, X. et al. Sensitivity studies of dust ice nuclei effect on cirrus clouds with the Community Atmosphere Model CAM5. Atmos. Chem. Phys. 12, 12061–12079 (2012).

    Article  Google Scholar 

  98. Huang, J. P., Wang, T. H., Wang, W. C., Li, Z. Q. & Yan, H. R. Climate effects of dust aerosols over East Asian arid and semiarid regions. J. Geophys. Res. Atmos. 119, 11398–11416 (2014).

    Article  Google Scholar 

  99. Perlwitz, J. & Miller, R. L. Cloud cover increase with increasing aerosol absorptivity: a counterexample to the conventional semidirect aerosol effect. J. Geophys. Res. Atmos. https://doi.org/10.1029/2009jd012637 (2010).

    Article  Google Scholar 

  100. Amiri-Farahani, A., Allen, R. J., Neubauer, D. & Lohmann, U. Impact of Saharan dust on North Atlantic marine stratocumulus clouds: importance of the semidirect effect. Atmos. Chem. Phys. 17, 6305–6322 (2017).

    Article  Google Scholar 

  101. Ackerman, A. S. et al. Reduction of tropical cloudiness by soot. Science 288, 1042–1047 (2000). This article shows that absorbing aerosols within a cloud layer can reduce cloudiness.

    Article  Google Scholar 

  102. Sand, M. et al. Aerosol absorption in global models from AeroCom phase III. Atmos. Chem. Phys. 21, 15929–15947 (2021).

    Article  Google Scholar 

  103. Samset, B. H. et al. Aerosol absorption: progress towards global and regional constraints. Curr. Clim. Change Rep. 4, 65–83 (2018).

    Article  Google Scholar 

  104. Doherty, O. M. & Evan, A. T. Identification of a new dust-stratocumulus indirect effect over the tropical North Atlantic. Geophys. Res. Lett. 41, 6935–6942 (2014).

    Article  Google Scholar 

  105. Huang, J. P. et al. Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia. Geophys. Res. Lett. https://doi.org/10.1029/2006gl026561 (2006).

    Article  Google Scholar 

  106. McFarquhar, G. M. & Wang, H. L. Effects of aerosols on trade wind cumuli over the Indian Ocean: model simulations. Q. J. R. Meteorol. Soc. 132, 821–843 (2006).

    Article  Google Scholar 

  107. Feingold, G., Jiang, H. L. & Harrington, J. Y. On smoke suppression of clouds in Amazonia. Geophys. Res. Lett. https://doi.org/10.1029/2004gl021369 (2005).

    Article  Google Scholar 

  108. Stephens, G. L., Wood, N. B. & Pakula, L. A. On the radiative effects of dust on tropical convection. Geophys. Res. Lett. https://doi.org/10.1029/2004gl021342 (2004).

    Article  Google Scholar 

  109. Wong, S., Dessler, A. E., Mahowald, N. M., Yang, P. & Feng, Q. Maintenance of lower tropospheric temperature inversion in the saharan air layer by dust and dry anomaly. J. Clim. 22, 5149–5162 (2009).

    Article  Google Scholar 

  110. Zhu, A., Ramanathan, V., Li, F. & Kim, D. Dust plumes over the Pacific, Indian, and Atlantic oceans: climatology and radiative impact. J. Geophys. Res. Atmos. https://doi.org/10.1029/2007jd008427 (2007).

    Article  Google Scholar 

  111. Chen, S. H., Wang, S. H. & Waylonis, M. Modification of Saharan air layer and environmental shear over the eastern Atlantic Ocean by dust-radiation effects. J. Geophys. Res. Atmos. 115, D21202 (2010).

    Article  Google Scholar 

  112. Huang, J. P. et al. Possible influences of Asian dust aerosols on cloud properties and radiative forcing observed from MODIS and CERES. Geophys. Res. Lett. https://doi.org/10.1029/2005gl024724 (2006).

    Article  Google Scholar 

  113. Amiri-Farahani, A., Allen, R. J., Li, K. F. & Chu, J. E. The semidirect effect of combined dust and sea salt aerosols in a multimodel analysis. Geophys. Res. Lett. 46, 10512–10521 (2019).

    Article  Google Scholar 

  114. Tegen, I. & Heinold, B. Large-scale modeling of absorbing aerosols and their semi-direct effects. Atmosphere https://doi.org/10.3390/atmos9100380 (2018).

    Article  Google Scholar 

  115. Painter, T. H. et al. Response of Colorado River runoff to dust radiative forcing in snow. Proc. Natl Acad. Sci. USA 107, 17125–17130 (2010).

    Article  Google Scholar 

  116. Hall, A. The role of surface albedo feedback in climate. J. Clim. 17, 1550–1568 (2004).

    Article  Google Scholar 

  117. Flanner, M. G. et al. Springtime warming and reduced snow cover from carbonaceous particles. Atmos. Chem. Phys. 9, 2481–2497 (2009).

    Article  Google Scholar 

  118. Dang, C., Brandt, R. E. & Warren, S. G. Parameterizations for narrowband and broadband albedo of pure snow and snow containing mineral dust and black carbon. J. Geophys. Res. Atmos. 120, 5446–5468 (2015).

    Article  Google Scholar 

  119. Flanner, M. G. et al. SNICAR-ADv3: a community tool for modeling spectral snow albedo. Geosci. Model. Dev. 14, 7673–7704 (2021).

    Article  Google Scholar 

  120. Liou, K. N. et al. Stochastic parameterization for light absorption by internally mixed BC/dust in snow grains for application to climate models. J. Geophys. Res. Atmos. 119, 7616–7632 (2014).

    Article  Google Scholar 

  121. He, C. L., Liou, K. N., Takano, Y., Chen, F. & Barlage, M. Enhanced snow absorption and albedo reduction by dust-snow internal mixing: modeling and parameterization. J. Adv. Model. Earth Syst. 11, 3755–3776 (2019).

    Article  Google Scholar 

  122. Warren, S. G. & Wiscombe, W. J. A model for the spectral albedo of snow .2. Snow containing atmospheric aerosols. J. Atmos. Sci. 37, 2734–2745 (1980).

    Article  Google Scholar 

  123. He, C., Takano, Y. & Liou, K. N. Close packing effects on clean and dirty snow albedo and associated climatic implications. Geophys. Res. Lett. 44, 3719–3727 (2017).

    Article  Google Scholar 

  124. He, C. & Flanner, M. Snow albedo and radiative transfer: theory, modeling, and parameterization 67–133 (Springer, 2020). [Series Ed Kokhanovsky, A. Springer Series in Light Scattering]

  125. Dang, C. et al. Measurements of light-absorbing particles in snow across the Arctic, North America, and China: effects on surface albedo. J. Geophys. Res. Atmos. 122, 10149–10168 (2017).

    Article  Google Scholar 

  126. Kylling, A., Zwaaftink, C. D. G. & Stohl, A. Mineral dust instantaneous radiative forcing in the Arctic. Geophys. Res. Lett. 45, 4290–4298 (2018).

    Article  Google Scholar 

  127. Dong, Z. W. et al. Aeolian dust transport, cycle and influences in high-elevation cryosphere of the Tibetan Plateau region: new evidences from alpine snow and ice. Earth Sci. Rev. https://doi.org/10.1016/j.earscirev.2020.103408 (2020).

    Article  Google Scholar 

  128. Di Mauro, B. et al. Mineral dust impact on snow radiative properties in the European Alps combining ground, UAV, and satellite observations. J. Geophys. Res. Atmos. 120, 6080–6097 (2015).

    Article  Google Scholar 

  129. Skiles, S. M. & Painter, T. H. Toward understanding direct absorption and grain size feedbacks by dust radiative forcing in snow with coupled snow physical and radiative transfer modeling. Water Resour. Res. 55, 7362–7378 (2019).

    Article  Google Scholar 

  130. Lawrence, D. M. et al. The CCSM4 Land Simulation, 1850–2005: assessment of surface climate and new capabilities. J. Clim. 25, 2240–2260 (2012).

    Article  Google Scholar 

  131. Martin, J. H. Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography 5, 1–13 (1990).

    Article  Google Scholar 

  132. Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013). This article reviews the current understanding of limiting nutrients for ocean ecosystems.

    Article  Google Scholar 

  133. Capone, D. G., Zehr, J. P., Paerl, H. W., Bergman, B. & Carpenter, E. J. Trichodesmium, a globally significant marine cyanobacterium. Science 276, 1221–1229 (1997).

    Article  Google Scholar 

  134. Moore, J. K., Doney, S. C., Lindsay, K., Mahowald, N. & Michaels, A. F. Nitrogen fixation amplifies the ocean biogeochemical response to decadal timescale variations in mineral dust deposition. Tellus Ser. B Chem. Phys. Meteorol. 58, 560–572 (2006).

    Article  Google Scholar 

  135. Johnson, M. S. & Meskhidze, N. Atmospheric dissolved iron deposition to the global oceans: effects of oxalate-promoted Fe dissolution, photochemical redox cycling, and dust mineralogy. Geosci. Model. Dev. 6, 1137–1155 (2013).

    Article  Google Scholar 

  136. Mahowald, N. M. et al. Aerosol trace metal leaching and impacts on marine microorganisms. Nat. Commun. https://doi.org/10.1038/s41467-018-04970-7 (2018).

    Article  Google Scholar 

  137. Tagliabue, A. et al. The integral role of iron in ocean biogeochemistry. Nature 543, 51–59 (2017).

    Article  Google Scholar 

  138. Krishnamurthy, A., Moore, J. K., Mahowald, N., Luo, C. & Zender, C. S. Impacts of atmospheric nutrient inputs on marine biogeochemistry. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2009jg001115 (2010).

    Article  Google Scholar 

  139. Mahowald, N. et al. Desert dust and anthropogenic aerosol interactions in the Community Climate System Model coupled-carbon-climate model. Biogeosciences 8, 387–414 (2011).

    Article  Google Scholar 

  140. Okin, G. S. et al. Spatial patterns of soil nutrients in two southern African savannas. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2007jg000584 (2008).

    Article  Google Scholar 

  141. Vitousek, P. M. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65, 285–298 (1984).

    Article  Google Scholar 

  142. Falkowski, P. G., Barber, R. T. & Smetacek, V. Biogeochemical controls and feedbacks on ocean primary production. Science 281, 200–206 (1998).

    Article  Google Scholar 

  143. Swap, R., Garstang, M., Greco, S., Talbot, R. & Kallberg, P. Saharan dust in the Amazon basin. Tellus Ser. B Chem. Phys. Meteorol. 44, 133–149 (1992).

    Article  Google Scholar 

  144. Okin, G. S., Mahowald, N., Chadwick, O. A. & Artaxo, P. Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems. Glob. Biogeochem. Cycles 18, Gb2005 (2004).

    Article  Google Scholar 

  145. Armstrong, R. A., Lee, C., Hedges, J. I., Honjo, S. & Wakeham, S. G. A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. Deep Sea Res. Part II-Top. Stud. Oceanogr. 49, 219–236 (2001).

    Article  Google Scholar 

  146. van der Jagt, H., Friese, C., Stuut, J. B. W., Fischer, G. & Iversen, M. H. The ballasting effect of Saharan dust deposition on aggregate dynamics and carbon export: aggregation, settling, and scavenging potential of marine snow. Limnol. Oceanogr. 63, 1386–1394 (2018).

    Article  Google Scholar 

  147. Paytan, A. et al. Toxicity of atmospheric aerosols on marine phytoplankton. Proc. Natl Acad. Sci. USA 106, 4601–4605 (2009).

    Article  Google Scholar 

  148. Thornhill, G. D. et al. Effective radiative forcing from emissions of reactive gases and aerosols — a multi-model comparison. Atmos. Chem. Phys. 21, 853–874 (2021).

    Article  Google Scholar 

  149. Patadia, F., Yang, E. S. & Christopher, S. A. Does dust change the clear sky top of atmosphere shortwave flux over high surface reflectance regions? Geophys. Res. Lett. 36, L15825 (2009).

    Article  Google Scholar 

  150. McConnell, J. R., Aristarain, A. J., Banta, J. R., Edwards, P. R. & Simoes, J. C. 20th-Century doubling in dust archived in an Antarctic Peninsula ice core parallels climate change and desertification in South America. Proc. Natl Acad. Sci. USA 104, 5743–5748 (2007).

    Article  Google Scholar 

  151. Mulitza, S. et al. Increase in African dust flux at the onset of commercial agriculture in the Sahel region. Nature 466, 226–228 (2010).

    Article  Google Scholar 

  152. Clifford, H. M. et al. A 2000 year saharan dust event proxy record from an ice core in the European Alps. J. Geophys. Res. Atmos. 124, 12882–12900 (2019).

    Article  Google Scholar 

  153. Prospero, J. M. & Lamb, P. J. African droughts and dust transport to the Caribbean: climate change implications. Science 302, 1024–1027 (2003).

    Article  Google Scholar 

  154. Evan, A. T. & Mukhopadhyay, S. African dust over the Northern Tropical Atlantic: 1955–2008. J. Appl. Meteorol. Climatol. 49, 2213–2229 (2010).

    Article  Google Scholar 

  155. Evan, A. T., Flamant, C., Gaetani, M. & Guichard, F. The past, present and future of African dust. Nature 531, 493–495 (2016).

    Article  Google Scholar 

  156. Mahowald, N. M., Ballantine, J. A., Feddema, J. & Ramankutty, N. Global trends in visibility: implications for dust sources. Atmos. Chem. Phys. 7, 3309–3339 (2007).

    Article  Google Scholar 

  157. Shao, Y. P., Klose, M. & Wyrwoll, K. H. Recent global dust trend and connections to climate forcing. J. Geophys. Res. Atmos. 118, 11107–11118 (2013).

    Article  Google Scholar 

  158. Wang, X., Huang, J. P., Ji, M. X. & Higuchi, K. Variability of East Asia dust events and their long-term trend. Atmos. Environ. 42, 3156–3165 (2008).

    Article  Google Scholar 

  159. Zuidema, P. et al. Is summer African dust arriving earlier to Barbados? The updated long-term in situ dust mass concentration time series from ragged point, Barbados, and Miami, Florida. Bull. Am. Meteorol. Soc. 100, 1981–1986 (2019).

    Article  Google Scholar 

  160. Gkikas, A. et al. Quantification of the dust optical depth across spatiotemporal scales with the MIDAS global dataset (2003–2017). Atmos. Chem. Phys. 22, 3553–3578 (2022).

    Article  Google Scholar 

  161. Ginoux, P. et al. Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res. 106, 20255–20273 (2001).

    Article  Google Scholar 

  162. Wu, C. C., Lin, Z. & Liu, X. The global dust cycle and uncertainty in CMIP5 (Coupled Model Intercomparison Project phase 5) models. Atmos. Chem. Phys. 20, 10401–10425 (2020).

    Article  Google Scholar 

  163. Kok, J. F., Albani, S., Mahowald, N. M. & Ward, D. S. An improved dust emission model — part 2: evaluation in the Community Earth System Model, with implications for the use of dust source functions. Atmos. Chem. Phys. 14, 13043–13061 (2014).

    Article  Google Scholar 

  164. Forster, P. et al. in The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity (eds Masson-Delmotte, V. et al.) Ch. 7 (Cambridge Univ. Press, 2021). This chapter provides a comprehensive review of how Earth’s energy budget has been perturbed by anthropogenic emissions of greenhouse gases and aerosols.

  165. Stevens, B. Rethinking the lower bound on aerosol radiative forcing. J. Clim. 28, 4794–4819 (2015).

    Article  Google Scholar 

  166. Carslaw, K. S. et al. Large contribution of natural aerosols to uncertainty in indirect forcing. Nature 503, 67–71 (2013).

    Article  Google Scholar 

  167. Murray, B. J., Carslaw, K. S. & Field, P. R. Opinion: cloud-phase climate feedback and the importance of ice-nucleating particles. Atmos. Chem. Phys. 21, 665–679 (2021). This article highlights the importance of understanding present and future emissions of dust and other ice nucleating particles for determining the cloud-phase climate feedback that partially controls climate sensitivity.

    Article  Google Scholar 

  168. Shi, Y. et al. Relative importance of high-latitude local and long-range-transported dust for Arctic ice-nucleating particles and impacts on Arctic mixed-phase clouds. Atmos. Chem. Phys. 22, 2909–2935 (2022).

    Article  Google Scholar 

  169. Sherwood, S. C. et al. An assessment of earth’s climate sensitivity using multiple lines of evidence. Rev. Geophys. https://doi.org/10.1029/2019rg000678 (2020).

    Article  Google Scholar 

  170. Caretta, M. A. et al. in Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).

  171. Cook, B. I. et al. Twenty-first century drought projections in the CMIP6 forcing scenarios. Earth Future https://doi.org/10.1029/2019ef001461 (2020).

    Article  Google Scholar 

  172. Mahowald, N. M. & Luo, C. A less dusty future? Geophys. Res. Lett. 30, 1903 (2003).

    Article  Google Scholar 

  173. Smith, W. K. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6, 306–310 (2016).

    Article  Google Scholar 

  174. McVicar, T. R. et al. Global review and synthesis of trends in observed terrestrial near-surface wind speeds: implications for evaporation. J. Hydrol. 416, 182–205 (2012).

    Article  Google Scholar 

  175. Zha, J. L. et al. Projected changes in global terrestrial near-surface wind speed in 1.5–4.0 °C global warming levels. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ac2fdd (2021).

    Article  Google Scholar 

  176. Pendergrass, A. G., Knutti, R., Lehner, F., Deser, C. & Sanderson, B. M. Precipitation variability increases in a warmer climate. Sci. Rep. https://doi.org/10.1038/s41598-017-17966-y (2017).

    Article  Google Scholar 

  177. O’Gorman, P. A. & Schneider, T. The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl Acad. Sci. USA 106, 14773–14777 (2009).

    Article  Google Scholar 

  178. Zender, C. S. & Kwon, E. Y. Regional contrasts in dust emission responses to climate. J. Geophys. Res. Atmos. https://doi.org/10.1029/2004jd005501 (2005).

    Article  Google Scholar 

  179. Rodriguez-Caballero, E. et al. Global cycling and climate effects of aeolian dust controlled by biological soil crusts. Nat. Geosci. 15, 458 (2022).

    Article  Google Scholar 

  180. Tegen, I., Werner, M., Harrison, S. P. & Kohfeld, K. E. Relative importance of climate and land use in determining present and future global soil dust emission. Geophys. Res. Lett. https://doi.org/10.1029/2003gl019216 (2004).

    Article  Google Scholar 

  181. Woodward, S., Roberts, D. L. & Betts, R. A. A simulation of the effect of climate change-induced desertification on mineral dust aerosol. Geophys. Res. Lett. 32, L18810 (2005).

    Article  Google Scholar 

  182. Mahowald, N. M. et al. Change in atmospheric mineral aerosols in response to climate: last glacial period, preindustrial, modern, and doubled carbon dioxide climates. J. Geophys. Res. 111, D10202 (2006).

    Google Scholar 

  183. Evan, A. T., Flamant, C., Fiedler, S. & Doherty, O. An analysis of aeolian dust in climate models. Geophys. Res. Lett. 41, 5996–6001 (2014).

    Article  Google Scholar 

  184. Evan, A. T. Surface winds and dust biases in climate models. Geophys. Res. Lett. 45, 1079–1085 (2018).

    Article  Google Scholar 

  185. Wu, C. L. et al. Can climate models reproduce the decadal change of dust aerosol in East Asia. Geophys. Res. Lett. 45, 9953–9962 (2018).

    Article  Google Scholar 

  186. Pu, B. & Ginoux, P. How reliable are CMIP5 models in simulating dust optical depth. Atmos. Chem. Phys. 18, 12491–12510 (2018).

    Article  Google Scholar 

  187. Zhao, A., Ryder, C. L. & Wilcox, L. J. How well do the CMIP6 models simulate dust aerosols? Atmos. Chem. Phys. 22, 2095–2119 (2022). This article shows that many of the biases reported for simulated dust in CMIP5 climate models still exist in the more recent CMIP6 models and implies that, as model complexity grows, so does the intermodel spread in simulated dust.

    Article  Google Scholar 

  188. Thornhill, G. et al. Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth system models. Atmos. Chem. Phys. 21, 1105–1126 (2021).

    Article  Google Scholar 

  189. Kok, J. F., Ward, D. S., Mahowald, N. M. & Evan, A. T. Global and regional importance of the direct dust–climate feedback. Nat. Commun. https://doi.org/10.1038/s41467-017-02620-y (2018). This article estimates the dust-climate feedback on global and regional scales using models and observations.

    Article  Google Scholar 

  190. Kok, J. F. et al. An improved dust emission model — part 1: model description and comparison against measurements. Atmos. Chem. Phys. 14, 13023–13041 (2014).

    Article  Google Scholar 

  191. Andreae, M. O., Jones, C. D. & Cox, P. M. Strong present-day aerosol cooling implies a hot future. Nature 435, 1187–1190 (2005). This article shows that a strong negative radiative forcing (cooling) due to aerosol changes since pre-industrial times implies a high climate sensitivity.

    Article  Google Scholar 

  192. Green, R. O. et al. The Earth surface mineral dust source investigation: an Earth science imaging spectroscopy mission. IEEE Aerospace Conference (2020).

  193. Meng, J. et al. Improved parameterization for the size distribution of emitted dust aerosols reduces model underestimation of super coarse dust. Geophys. Res. Lett. https://doi.org/10.1029/2021gl097287 (2022).

    Article  Google Scholar 

  194. The National Academies of Sciences, Engineering, and Medicine. Reflecting Sunlight: Recommendations for Solar Geoengineering Research and Research Governance (The National Academies Press, 2021).

  195. Slingo, J. et al. Ambitious partnership needed for reliable climate prediction. Nat. Clim. Change 12, 499–503 (2022).

    Article  Google Scholar 

  196. Myhre, G. et al. Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmos. Chem. Phys. 13, 1853–1877 (2013).

    Article  Google Scholar 

  197. Okin, G. S. Where and how often does rain prevent dust emission? Geophys. Res. Lett. https://doi.org/10.1029/2021gl095501 (2022).

    Article  Google Scholar 

  198. Bergametti, G. et al. Rain, wind, and dust connections in the Sahel. J. Geophys. Res. Atmos. https://doi.org/10.1029/2021jd035802 (2022).

    Article  Google Scholar 

  199. Marsham, J. H., Knippertz, P., Dixon, N. S., Parker, D. J. & Lister, G. M. S. The importance of the representation of deep convection for modeled dust-generating winds over West Africa during summer. Geophys. Res. Lett. https://doi.org/10.1029/2011gl048368 (2011).

    Article  Google Scholar 

  200. Heinold, B. et al. The role of deep convection and nocturnal low-level jets for dust emission in summertime West Africa: estimates from convection-permitting simulations. J. Geophys. Res. Atmos. 118, 4385–4400 (2013).

    Article  Google Scholar 

  201. Okin, G. S. A new model of wind erosion in the presence of vegetation. J. Geophys. Res. Earth Surf. 113, F02s10 (2008).

    Article  Google Scholar 

  202. Chappell, A. & Webb, N. P. Using albedo to reform wind erosion modelling, mapping and monitoring. Aeolian Res. 23, 63–78 (2016).

    Article  Google Scholar 

  203. Huang, J. P. et al. Global semi-arid climate change over last 60 years. Clim. Dyn. 46, 1131–1150 (2016).

    Article  Google Scholar 

  204. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model. Dev. 9, 1937–1958 (2016).

    Article  Google Scholar 

  205. Stanelle, T., Bey, I., Raddatz, T., Reick, C. & Tegen, I. Anthropogenically induced changes in twentieth century mineral dust burden and the associated impact on radiative forcing. J. Geophys. Res. Atmos. 119, 13526–13546 (2014).

    Article  Google Scholar 

  206. Kohfeld, K. E. & Harrison, S. P. DIRTMAP: the geological record of dust. Earth Sci. Rev. 54, 81–114 (2001).

    Article  Google Scholar 

  207. Markle, B. R., Steig, E. J., Roe, G. H., Winckler, G. & McConnell, J. R. Concomitant variability in high-latitude aerosols, water isotopes and the hydrologic cycle. Nat. Geosci. 11, 853 (2018).

    Article  Google Scholar 

  208. Cowie, S. M., Knippertz, P. & Marsham, J. H. Are vegetation-related roughness changes the cause of the recent decrease in dust emission from the Sahel? Geophys. Res. Lett. 40, 1868–1872 (2013).

    Article  Google Scholar 

  209. Smith, S. D. et al. Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature 408, 79–82 (2000).

    Article  Google Scholar 

  210. Goldewijk, K. K., Beusen, A., van Drecht, G. & de Vos, M. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob. Ecol. Biogeogr. 20, 73–86 (2011).

    Article  Google Scholar 

  211. Lee, J. A., Baddock, M. C., Mbuh, M. J. & Gill, T. E. Geomorphic and land cover characteristics of aeolian dust sources in West Texas and eastern New Mexico, USA. Aeolian Res. 3, 459–466 (2012).

    Article  Google Scholar 

  212. Neff, J. C. et al. Increasing eolian dust deposition in the western United States linked to human activity. Nat. Geosci. 1, 189–195 (2008).

    Article  Google Scholar 

  213. Webb, N. P. & Pierre, C. Quantifying anthropogenic dust emissions. Earth Future 6, 286–295 (2018).

    Article  Google Scholar 

  214. Niemeyer, T. C. et al. Optical depth, size distribution and flux of dust from Owens Lake, California. Earth Surf. Process. Landf. 24, 463–479 (1999).

    Article  Google Scholar 

  215. Xi, X. & Sokolik, I. N. Quantifying the anthropogenic dust emission from agricultural land use and desiccation of the Aral Sea in Central Asia. J. Geophys. Res. Atmos. 121, 12270–12281 (2016).

    Article  Google Scholar 

  216. Indoitu, R. et al. Dust emission and environmental changes in the dried bottom of the Aral Sea. Aeolian Res. 17, 101–115 (2015).

    Article  Google Scholar 

  217. Tegen, I. & Fung, I. Contribution to the atmospheric mineral aerosol load from land-surface modification. J. Geophys. Res. Atmos. 100, 18707–18726 (1995).

    Article  Google Scholar 

  218. Sokolik, I. N. & Toon, O. B. Direct radiative forcing by anthropogenic airborne mineral aerosols. Nature 381, 681–683 (1996).

    Article  Google Scholar 

  219. Mahowald, N. M., Rivera, G. D. R. & Luo, C. Comment on ‘Relative importance of climate and land use in determining present and future global soil dust emission’ by I. Tegen et al. Geophys. Res. Lett. https://doi.org/10.1029/2004gl021272 (2004).

    Article  Google Scholar 

  220. Mahowald, N. M. Anthropocene changes in desert area: sensitivity to climate model predictions. Geophys. Res. Lett. 34, L18817 (2007).

    Article  Google Scholar 

  221. Ginoux, P., Prospero, J. M., Gill, T. E., Hsu, N. C. & Zhao, M. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys. 50, Rg3005 (2012). This article uses satellite data to attribute dust emissions to natural and anthropogenic sources, finding that anthropogenic emissions account for approximately a quarter of dust emissions.

    Article  Google Scholar 

Download references

Acknowledgements

J.F.K. is funded by the National Science Foundation grants 1856389 and 2151093, A.T.E. is funded by NSF grant 1833173, N.M.M. is funded by the Department of Energy grant DE-SC0021302 and V.A.K. and T.S. are supported by the European Union via its Horizon 2020 project FORCeS (GA 81205). We thank J. Hooper and P. Sabatier for providing dust deposition data.

Author information

Authors and Affiliations

Authors

Contributions

J.F.K. led the review, performed the dust reconstruction, wrote the Supplementary material, prepared the figures and compiled the paper. T.S. and A.A.A. contributed the section on clouds and Fig. 2c–f. V.A.K. contributed the section on atmospheric chemistry and Fig. 2b. N.M.M. contributed the section on biogeochemistry and a draft of Fig. 2h. C.H. contributed the section on the cryosphere and Fig. 2g. A.T.E. contributed the section on future dust changes. D.M.L. contributed to the CMIP6 results in Fig. 5. All authors contributed to the manuscript preparation, discussion and writing.

Corresponding author

Correspondence to Jasper F. Kok.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Bernadett Weinzierl, Peter Colarco and Yves Balkanski for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kok, J.F., Storelvmo, T., Karydis, V.A. et al. Mineral dust aerosol impacts on global climate and climate change. Nat Rev Earth Environ 4, 71–86 (2023). https://doi.org/10.1038/s43017-022-00379-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-022-00379-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing