Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Constraints from partitioning experiments on the composition of subduction-zone fluids

Abstract

THE generation of calc-alkaline magmas in subduct ion zones is thought to be the most important mechanism for the growth of continental crust since the Proterozoic eon. It is widely assumed that most of these magmas are products of fluid-triggered melting in the mantle wedge above the subducted slab1,2. Fluid transport from the subducted slab into the zone of melting has also been invoked in order to explain many of the trace element and radiogenic isotope characteristics of calk-alkaline magmas3–7. Here I report experimental data on the partitioning of trace elements between fluids, silicate melts and minerals, which suggest that the agent responsible for the transport of trace elements in subduction zones may be an alkali-chloride-rich aqueous fluid. The data show that chemical transport by such a fluid can generate the trace element and isotope enrichment pattern typical for calc-alkaline magmas, including the enrichment of large ionic lithophile elements, lead and uranium, and the characteristic depletion in niobium and tantalum.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Davies, J. H. & Stevenson, D. J. J. geophys. Res. 97, 2037–2070 (1992).

    Article  ADS  Google Scholar 

  2. Tatsumi, Y., Hamilton, D. L. & Nesbitt, R. W. J. Volcan. geotherm. Res. 29, 293–309 (1986).

    Article  ADS  CAS  Google Scholar 

  3. Maury, R. C., Defant, M. J. & Joron, J. L. Nature 360, 661–663 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Hawkesworth, C. J., Gallagher, K., Hergt, J. M. & McDermott, F. Lithos 33, 169–188 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Miller, D. M., Goldstein, S. L. & Langmuir, C. H. Nature 368, 514–520 (1994).

    Article  ADS  CAS  Google Scholar 

  6. Perfit, M. R., Gust, D. A., Bence, A. E., Arculus, R. J. & Taylor, S. R. Chem. Geol. 30, 227–256 (1980).

    Article  ADS  CAS  Google Scholar 

  7. Arculus, R. J. Lithos 33, 189–208 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Philippot, P. Chem. Geol. 108, 93–112 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Brenan, J. M. & Watson, E. B. Earth planet. Sci. Lett. 107, 672–688 (1991).

    Article  ADS  CAS  Google Scholar 

  10. Keppler, H. & Wyllie, P. J. Contr. Miner. Petrol. 109, 139–150 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Huheey, J. E. Inorganic Chemistry (Harper & Row, New York, 1983).

    Google Scholar 

  12. Brenan, J. M., Shaw, H. F., Ryerson, F. J. & Phinney, D. L. Geochim. cosmochim. Acta 59, 3331–3350 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Johnson, K. T. M. & Kinzler, R. J. Eos (abstr.) 70, 1388 (1989).

    Google Scholar 

  14. Chaussidon, M. & Libourel, G. Geochim. cosmochim. Acta 57, 5053–5062 (1993).

    Article  ADS  CAS  Google Scholar 

  15. Carroll, M. R. & Wyllie, P. J. Am. Mineral. 75, 345–357 (1990).

    CAS  Google Scholar 

  16. McCulloch, M. T. & Gamble, J. A. Earth planet. Sci. Lett. 102, 358–374 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Hofmann, A. E. Earth planet. Sci. Lett. 90, 297–314 (1988).

    Article  ADS  CAS  Google Scholar 

  18. Ayers, J. C. & Eggler, D. H. Geochim. cosmochim. Acta 59, 4237–4246 (1995).

    Article  ADS  CAS  Google Scholar 

  19. Condomines, M., Hemond, C. & Allègre, C. J. Earth planet. Sci. Lett. 90, 243–262 (1988).

    Article  ADS  CAS  Google Scholar 

  20. Hart, S. R. & Dunn, T. Contr. Miner. Petrol. 113, 1–8 (1993).

    Article  ADS  CAS  Google Scholar 

  21. Irving, A. J. Geochim. cosmochim. Acta 42, 743–770 (1978).

    Article  ADS  CAS  Google Scholar 

  22. Green, T. H. Chem. Geol. 117, 1–36 (1994).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keppler, H. Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature 380, 237–240 (1996). https://doi.org/10.1038/380237a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/380237a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing