Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

RNA-catalysed carbon–carbon bond formation

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Diels–Alder reaction between the acyclic diene conjugated to the RNA through a long PEG linker and the maleimide dienophile 1 (BMCC).
Figure 2: a, Random region (100N) sequences of 11 isolates obtained from the DAase in vitro selection.
Figure 3: The observed rate constant (kobs) increases as a function of BMCC concentration for isolate 22.
Figure 4: Inhibition of the DAase activity of isolate 22 by the free cycloaddition product 3 with an apparent Ki shown.

References

  1. Joyce, G. F. Ribozymes: Building the RNA world. Curr. Biol. 6, 965–967 (1996).

    Google Scholar 

  2. Joyce, G. F. The rise and fall of the RNA world. New Biologist 3, 399–407 (1991).

    Google Scholar 

  3. Joyce, G. F. Some biochemical thoughts on the RNA world. Chem. Biol. 3, 405–407 (1996).

    Google Scholar 

  4. Cech, T. R. The chemistry of self-splicing RNA and RNA enzymes. Science 236, 1532–1539 (1987).

    Google Scholar 

  5. Long, D. M. & Uhlenbeck, O. C. Self-cleaving catalytic RNA. FASEB J. 7, 25–30 (1993).

    Google Scholar 

  6. Bartel, D. P. & Szostak, J. W. Isolation of new ribozymes from a large pool of random sequences. Science 261, 1411–1418 (1993).

    Google Scholar 

  7. 7. Beaudry, A. A. & Joyce, G. F. Directed evolution of an RNA enzyme. Science 257, 635–641 (1992).

    Google Scholar 

  8. Kumar, P. K. R. & Ellington, A. D. Artificial evolution and natural ribozymes. FASEB J. 9, 1183–1195 (1995).

    Google Scholar 

  9. Illangasekare, M., Sanchez, G., Nickles, T. & Yarus, M. Aminoacyl-RNA synthesis catalyzed by an RNA. Science 267, 643–647 (1995).

    Google Scholar 

  10. Lohse, P. A. & Szostak, J. W. Ribozyme-catalyzed amino-acid transfer reactions. Nature 381, 442–444 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Li, Y. & Sen, D. Acatalytic DNA for porphyrin metallation. Nature Struct. Biol. 3, 743–747 (1996).

    Google Scholar 

  12. Conn, M. M., Prudent, J. R. & Schultz, P. G. Porphyrin metallation catalyzed by a small RNA molecule. J. Am. Chem. Soc. 118, 7012–7013 (1996).

    Google Scholar 

  13. Dewey, T. M., Zyzniewski, C. & Eaton, B. E. The RNA world: functional diversity in a nucleoside by carboxyamidation of uridine. Nucleosides &Nucleotides 15, 1611–1617 (1996).

    Google Scholar 

  14. Morris, K. N.et al. Enrichment for RNA molecules that bind a Diels–Alder transition state analog. Proc. Natl Acad. Sci. USA 91, 13028–13032 (1994).

    Google Scholar 

  15. Jencks, W. P. in Catalysis in Chemistry and Enzymology 644–712 (Dover Publications, New York, (1987)).

    Google Scholar 

  16. Williams, J. W. & Morrison, J. F. The kinetics of reversible tight-binding inhibition. Methods Enzymol. 63, 437–467 (1979).

    Google Scholar 

  17. Kazakov, S. A. in Bioorganic Chemistry: Nucleic Acids(ed. Hecht, S. M.) 244 (Oxford Univ. Press, New York, (1996)).

    Google Scholar 

  18. Cotton, F. A. & Wilkinson, G. Advanced Inorganic Chemistry(Wiley, New York, (1988)).

    Google Scholar 

  19. Otto, S., Bertoncin, F. & Engberts, J. B. F. N. Lewis acid catalysis of a Diels–Alder reaction in water. J. Am. Chem. Soc. 118, 7702–7707 (1996).

    Google Scholar 

  20. Otto, S. & Engberts, J. B. F. N. Lewis acid catalysis of a Diels–Alder reaction in water. Tetrahedr. Lett. 36, 2645–2648 (1995).

    Google Scholar 

  21. Ni, J., Pomerantz, S. C., Rozenski, J., Zhang, Y. & McCloskey, J. M. Interpretation of oligonucleotide mass spectra for determination of sequence using electrospray ionization and tandem mass spectrometry. Anal. Chem. 68, 1989–1999 (1996).

    Google Scholar 

  22. Pomerantz, S. C., McCloskey, J. A., Tarasow, T. M. & Eaton, B. E. Deconvolution of combinatorial oligonucleotide libraries by electrospray ionization tandem mass spectrometry. J. Am. Chem. Soc. 119, 3861–3867 (1997).

    Google Scholar 

  23. Tarasow, T., Tinnermeier, D. & Zyzniewski, C. Characterization of oligodeoxyribonucleotide-polyethylene glycol conjugates by electrospray mass spectrometry. Bioconjugate Chem. 8, 89–93 (1997).

    Google Scholar 

  24. Wiegand, T. W., Janssen, R. C. & Eaton, B. E. Selection of RNA amide synthases. Chem. Biol.(in the press).

Download references

Acknowledgements

We thank L. Gold for support, guidance and vision; the scientific community at NeXstar, especially members of the Medicinal Chemistry group, for helpful discussions and ideas; S. Wayland for the synthesis of compound 2; and T. Wiegand and D. Nieuwlandt for inspiring dialogue and technical assistance. We also thank S. C. Pomerantz, P. F. Crain and J. A. McCloskey for ESI–MS/MS analysis.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarasow, T., Tarasow, S. & Eaton, B. RNA-catalysed carbon–carbon bond formation. Nature 389, 54–57 (1997). https://doi.org/10.1038/37950

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/37950

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing